LIU Hai, ZHOU Tong, CHEN Cong, et al. Design of all dielectric metasurface methane sensor based on Fano resonance[J]. Journal of Mine Automation,2023,49(9):106-114. DOI: 10.13272/j.issn.1671-251x.18108
Citation: LIU Hai, ZHOU Tong, CHEN Cong, et al. Design of all dielectric metasurface methane sensor based on Fano resonance[J]. Journal of Mine Automation,2023,49(9):106-114. DOI: 10.13272/j.issn.1671-251x.18108

Design of all dielectric metasurface methane sensor based on Fano resonance

More Information
  • Received Date: April 19, 2023
  • Revised Date: September 11, 2023
  • Available Online: September 27, 2023
  • Compared with traditional methane sensors, metasurface methane sensors have advantages such as high sensitivity, stable performance, miniaturization, integration, and multi functional customizability. It better meets the application needs in complex environments such as coal mines. This paper proposes an all dielectric type metasurface methane sensor based on Fano resonance. The metasurface structure consists of periodic silicon nanostructures and SiO2 substrates, consisting of four square silicon ring nanostructures and a central silicon nanoblock. By changing the geometric parameters, the effect on the Fano resonance of the all dielectric metasurface structure is observed. The results show the following points. Considering the quality factor and modulation depth of the structure, the center distance of the square silicon ring should be 1000 nm, the inner edge length of the square silicon ring should be 100 nm, and the edge length of the silicon nanoblock should be 200 nm. At this time, the quality factor is 227.60, and the modulation depth is 99.98%, which is close to 100%. By coating methane gas sensing thin films within the metasurface structure to achieve sensing and detection functions, combined with the extremely narrow linewidth Fano resonance features and significant local field enhancement effect, high-precision detection of methane gas is achieved. The simulation results show that the sensitivity of the all dielectric metasurface sensor to methane volume fraction is −0.953 nm/%. The change in methane volume fraction is linearly related to the shift of the resonance peak, indicating good monitoring performance. The refractive index sensitivity of the all dielectric metasurface sensor is as high as 883.95 nm/RIU. The resonance peak offset is linearly related to the environmental refractive index increment, which can be used to detect changes in environmental refractive index.
  • [1]
    UMA S,SHOBANA M K. Metal oxide semiconductor gas sensors in clinical diagnosis and environmental monitoring[J]. Sensors and Actuators A:Physical,2023,349. DOI: 10.1016/j.sna.2022.114044.
    [2]
    刘妮,舒震,隋然,等. 基于MEMS技术的甲烷催化燃烧传感器研究进展[J]. 煤炭与化工,2022,45(11):131-135,147. DOI: 10.19286/j.cnki.cci.2022.11.036

    LIU Ni,SHU Zhen,SUI Ran,et al. Research progress of methane catalytic combustion sensor based on MEMS technology[J]. Coal and Chemical Industry,2022,45(11):131-135,147. DOI: 10.19286/j.cnki.cci.2022.11.036
    [3]
    XU Maosen,XU Yan,TAO Jifang,et al. A design of an ultra-compact infrared gas sensor for respiratory quotient (qCO2) detection[J]. Sensors and Actuators A:Physical,2021,331. DOI: 10.1016/j.sna.2021.112953.
    [4]
    FARQUHAR A K,HENSHAW G S,WILLIAMS D E. Errors in ambient gas concentration measurement caused by acoustic response of electrochemical gas sensors[J]. Sensors and Actuators A:Physical,2023,354. DOI: 10.1016/j.sna.2023.114254.
    [5]
    李泽芳. 矿用传感器技术发展现状与展望[J]. 煤炭与化工,2021,44(8):74-76.

    LI Zefang. Status and prospect of mining sensor technology development[J]. Coal and Chemical Industry,2021,44(8):74-76.
    [6]
    HU Jie,BANDYOPADHYAY S,LIU Yuhui,et al. A review on metasurface:from principle to smart metadevices[J]. Frontiers in Physics,2020,8. DOI: 10.3389/fphy.2020.586087.
    [7]
    HILL M T. Optical waveguide switch based on a negative-index metamaterial load[J]. Optics Letters,2023,48(4):948-951. DOI: 10.1364/OL.480020
    [8]
    JIANG Yannan,SUN Shuo,WANG Jiao. Single-layer near-zero refractive index metamaterial lens based on non-complete periodic arrays[J]. Optics Express,2022,30(25):44878-44885. DOI: 10.1364/OE.475299
    [9]
    GARIFULLIN A I,GAINUTDINOV R KH,KHAMADEEV M A. Acceleration of chemical reactions in hybrid one-dimensional photonic crystals based on high-index metamaterials[J]. Bulletin of the Russian Academy of Sciences:Physics,2023,86(S1):66-70.
    [10]
    韩冷,谢文宣,龚安民,等. 基于超表面的卫星天线设计进展综述[J/OL]. 电讯技术:1-10[2023-04-12]. DOI: 10.20079/j.issn.1001-893x.221225002.

    HAN Leng,XIE Wenxuan,GONG Anmin,et al. Research progress of satellite antenna based on metasurface[J/OL]. Telecommunication Engineering:1-10[2023-04-12]. DOI: 10.20079/j.issn.1001-893x.221225002.
    [11]
    刘海霞,易浩,马向进,等. 基于无源可重构智能超表面的室内无线信号覆盖增强[J]. 通信学报,2022,43(12):32-44.

    LIU Haixia,YI Hao,MA Xiangjin,et al. Indoor wireless signal coverage and enhancement based on passive reconfigurable intelligent metasurface[J]. Journal on Communications,2022,43(12):32-44.
    [12]
    WANG Yuandong,WU Guozhang,WANG Yibo,et al. Single-layer metasurface:optical transparency,microwave scattering reduction and infrared emissivity decrease[J]. Optical Materials,2023,135. DOI: 10.1016/j.optmat.2022.113380.
    [13]
    CAI Haocheng,YU Xiaoxu,MAO Luhong. Theoretical study on all-dielectric elliptic cross metasurface sensor governed by bound states in the continuum[J]. Materials,2023,16(5). DOI: 10.3390/ma16052113.
    [14]
    DANILA O,GROSS B M. Towards highly efficient nitrogen dioxide gas sensors in humid and wet environments using triggerable-polymer metasurfaces[J]. Polymers,2023,15(3). DOI: 10.3390/polym15030545.
    [15]
    MIHAI L,MIHALCEA R,TOMESCU R,et al. Selective mid-IR metamaterial-based gas sensor system:proof of concept and performances tests[J]. Nanomaterials,2022,12(6). DOI: 10.3390/nano12061009.
    [16]
    KAZANSKIY N L,BUTT M A,KHONINA S N. Carbon dioxide gas sensor based on polyhexamethylene biguanide polymer deposited on silicon nano-cylinders metasurface[J]. Sensors,2021,21(2). DOI: 10.3390/s21020378.
    [17]
    FANO U. Effects of configuration interaction on intensities and phase shifts[J]. Physical Review,1961,124(6):1866-1878. DOI: 10.1103/PhysRev.124.1866
    [18]
    MIROSHNICHENKO A E,FLACH S,KIVSHAR Y S. Fano resonances in nanoscale structures [J]. Reviews of Modern Physics,2010,82(3). DOI: 10.1103/RevModPhys.82.2257.
    [19]
    FEDOTOV V A,PAPASIMAKIS N,PLUM E,et al. Spectral collapse in ensembles of metamolecules[J]. Physical Review Letters,2010,104(22). DOI: 10.1103/PhysRevLett.104.223901.
    [20]
    YUAN Shuai,QIU Xingzhi,CUI Chengcong,et al. Strong photoluminescence enhancement in all-dielectric fano metasurface with high quality factor[J]. ACS Nano,2017,11(11):10704-10711. DOI: 10.1021/acsnano.7b04810
    [21]
    YANG Jianchun,ZHOU Lang,CHE Xin,et al. Photonic crystal fiber methane sensor based on modal interference with an ultraviolet curable fluoro-siloxane nano-film incorporating cryptophane A[J]. Sensors and Actuators B:Chemical,2016,235:717-722. DOI: 10.1016/j.snb.2016.05.125
  • Related Articles

    [1]ZHU Xingpan, WANG Yang, REN Xiaowei, YAN Li, ZHANG Linjiang, LIU Wenyong, JIN Yongfei, CHEN Yuliang. Research on vertical air leakage law of surface in goaf of shallow coal seams under different seasonal conditions[J]. Journal of Mine Automation, 2023, 49(10): 104-109. DOI: 10.13272/j.issn.1671-251x.2023010035
    [2]XING Zhen. Numerical simulation study on the influence of surface air leakage in shallow thick coal seam on coal spontaneous combustion in goaf[J]. Journal of Mine Automation, 2021, 47(2): 80-87. DOI: 10.13272/j.issn.1671-251x.2020100018
    [3]LIU Kunlun, CHANG Bo, MA Zujie, WANG Gang. Research on air leakage characteristics in goaf of working face under natural wind pressure[J]. Journal of Mine Automation, 2020, 46(9): 38-43. DOI: 10.13272/j.issn.1671-251x.2020020027
    [4]WU Fengliang, HE Xiaochen, CHANG Xintan, MA Li, LI Chao. Research on simulation technology of surface air leakage of shallow-buried goaf based on network calculatio[J]. Journal of Mine Automation, 2017, 43(12): 64-69. DOI: 10.13272/j.issn.1671-251x.2017.12.013
    [5]LI Wanghuai, XIA Xu. Research of routing protocol for wireless sensor network in coal mine tunnel based on multi sink nodes[J]. Journal of Mine Automation, 2016, 42(6): 46-51. DOI: 10.13272/j.issn.1671-251x.2016.06.012
    [6]LU Zhongliang, YANG Nanke. Exterior ventilation leakage test and reform of Fengchishan Coal Mine[J]. Journal of Mine Automation, 2014, 40(12): 86-89. DOI: 10.13272/j.issn.1671-251x.2014.12.023
    [7]ZHANG Feng, SONG Boming, XU Xi, XU Zhao. Design of Sink node of perception system of energy consumption for mine crane[J]. Journal of Mine Automation, 2014, 40(2): 19-22. DOI: 10.13272/j.issn.1671-251x.2014.02.006
    [8]GAO Yu. Development of a Leakage Protector with Additional DC Source[J]. Journal of Mine Automation, 2010, 36(4): 22-24.
    [9]CAO Lian-bing, CHENG Hong, BAI Lin-xu. Selection Design of Controller of Leakage Protector of Coal Mine[J]. Journal of Mine Automation, 2010, 36(3): 104-107.
    [10]ZHANG Zhao-yong, LIU Bin-kun, HE Ping. To Achieve Synchronous Control of Sinking Hoist by Programmable Controller[J]. Journal of Mine Automation, 1996, 22(4): 8-10.
  • Cited by

    Periodical cited type(14)

    1. 王泽斌. 选煤厂漏电保护系统设计与试验. 江西煤炭科技. 2023(01): 220-221+224 .
    2. 冯小平. 煤矿井下馈电开关保护装置研究. 煤. 2023(04): 102-104 .
    3. 刘鹏强. 煤矿井下低压电网漏电保护技术研究. 矿业装备. 2023(03): 98-100 .
    4. 王恩光. 煤矿井下低压电网漏电保护技术研究. 矿业装备. 2023(07): 114-116 .
    5. 王泽龙. 建筑电气施工中漏电保护技术应用实践. 江西建材. 2023(07): 234-236 .
    6. 李建云. 一种矿用馈电开关保护装置的质量设计探析. 中国石油和化工标准与质量. 2022(13): 127-129 .
    7. 杜威. 煤矿低压电网漏电保护技术研究. 矿业装备. 2022(04): 190-192 .
    8. 赵小平,韩晨霞,马晟,高涛. 矿用馈电开关保护装置设计研究. 能源与环保. 2021(06): 197-200+206 .
    9. 曹建文. 矿井低压电网选择性漏电保护装置设计. 煤矿机电. 2021(03): 15-18 .
    10. 黎青. 采煤机用变频调速系统漏电保护技术发展及应用. 煤矿机械. 2021(11): 137-140 .
    11. 文金忠,张立中,刘建洪,张文宏,魏振富. 煤矿井下低压电网漏电保护技术研究与应用. 能源与环保. 2021(08): 154-157 .
    12. 王清亮,杨博,高梅,刘新茹,李磊,郝兆明. 基于等效电导的矿井电网智能漏电保护方法. 工矿自动化. 2020(06): 59-64 . 本站查看
    13. 贾补亮. 井下漏电保护系统研究. 能源与节能. 2020(10): 133-134 .
    14. 韩涛. 选煤厂漏电保护系统研究. 自动化应用. 2020(10): 109-111 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (989) PDF downloads (34) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return