Citation: | LIU Hai, ZHOU Tong, CHEN Cong, et al. Design of all dielectric metasurface methane sensor based on Fano resonance[J]. Journal of Mine Automation,2023,49(9):106-114. DOI: 10.13272/j.issn.1671-251x.18108 |
[1] |
UMA S,SHOBANA M K. Metal oxide semiconductor gas sensors in clinical diagnosis and environmental monitoring[J]. Sensors and Actuators A:Physical,2023,349. DOI: 10.1016/j.sna.2022.114044.
|
[2] |
刘妮,舒震,隋然,等. 基于MEMS技术的甲烷催化燃烧传感器研究进展[J]. 煤炭与化工,2022,45(11):131-135,147. DOI: 10.19286/j.cnki.cci.2022.11.036
LIU Ni,SHU Zhen,SUI Ran,et al. Research progress of methane catalytic combustion sensor based on MEMS technology[J]. Coal and Chemical Industry,2022,45(11):131-135,147. DOI: 10.19286/j.cnki.cci.2022.11.036
|
[3] |
XU Maosen,XU Yan,TAO Jifang,et al. A design of an ultra-compact infrared gas sensor for respiratory quotient (qCO2) detection[J]. Sensors and Actuators A:Physical,2021,331. DOI: 10.1016/j.sna.2021.112953.
|
[4] |
FARQUHAR A K,HENSHAW G S,WILLIAMS D E. Errors in ambient gas concentration measurement caused by acoustic response of electrochemical gas sensors[J]. Sensors and Actuators A:Physical,2023,354. DOI: 10.1016/j.sna.2023.114254.
|
[5] |
李泽芳. 矿用传感器技术发展现状与展望[J]. 煤炭与化工,2021,44(8):74-76.
LI Zefang. Status and prospect of mining sensor technology development[J]. Coal and Chemical Industry,2021,44(8):74-76.
|
[6] |
HU Jie,BANDYOPADHYAY S,LIU Yuhui,et al. A review on metasurface:from principle to smart metadevices[J]. Frontiers in Physics,2020,8. DOI: 10.3389/fphy.2020.586087.
|
[7] |
HILL M T. Optical waveguide switch based on a negative-index metamaterial load[J]. Optics Letters,2023,48(4):948-951. DOI: 10.1364/OL.480020
|
[8] |
JIANG Yannan,SUN Shuo,WANG Jiao. Single-layer near-zero refractive index metamaterial lens based on non-complete periodic arrays[J]. Optics Express,2022,30(25):44878-44885. DOI: 10.1364/OE.475299
|
[9] |
GARIFULLIN A I,GAINUTDINOV R KH,KHAMADEEV M A. Acceleration of chemical reactions in hybrid one-dimensional photonic crystals based on high-index metamaterials[J]. Bulletin of the Russian Academy of Sciences:Physics,2023,86(S1):66-70.
|
[10] |
韩冷,谢文宣,龚安民,等. 基于超表面的卫星天线设计进展综述[J/OL]. 电讯技术:1-10[2023-04-12]. DOI: 10.20079/j.issn.1001-893x.221225002.
HAN Leng,XIE Wenxuan,GONG Anmin,et al. Research progress of satellite antenna based on metasurface[J/OL]. Telecommunication Engineering:1-10[2023-04-12]. DOI: 10.20079/j.issn.1001-893x.221225002.
|
[11] |
刘海霞,易浩,马向进,等. 基于无源可重构智能超表面的室内无线信号覆盖增强[J]. 通信学报,2022,43(12):32-44.
LIU Haixia,YI Hao,MA Xiangjin,et al. Indoor wireless signal coverage and enhancement based on passive reconfigurable intelligent metasurface[J]. Journal on Communications,2022,43(12):32-44.
|
[12] |
WANG Yuandong,WU Guozhang,WANG Yibo,et al. Single-layer metasurface:optical transparency,microwave scattering reduction and infrared emissivity decrease[J]. Optical Materials,2023,135. DOI: 10.1016/j.optmat.2022.113380.
|
[13] |
CAI Haocheng,YU Xiaoxu,MAO Luhong. Theoretical study on all-dielectric elliptic cross metasurface sensor governed by bound states in the continuum[J]. Materials,2023,16(5). DOI: 10.3390/ma16052113.
|
[14] |
DANILA O,GROSS B M. Towards highly efficient nitrogen dioxide gas sensors in humid and wet environments using triggerable-polymer metasurfaces[J]. Polymers,2023,15(3). DOI: 10.3390/polym15030545.
|
[15] |
MIHAI L,MIHALCEA R,TOMESCU R,et al. Selective mid-IR metamaterial-based gas sensor system:proof of concept and performances tests[J]. Nanomaterials,2022,12(6). DOI: 10.3390/nano12061009.
|
[16] |
KAZANSKIY N L,BUTT M A,KHONINA S N. Carbon dioxide gas sensor based on polyhexamethylene biguanide polymer deposited on silicon nano-cylinders metasurface[J]. Sensors,2021,21(2). DOI: 10.3390/s21020378.
|
[17] |
FANO U. Effects of configuration interaction on intensities and phase shifts[J]. Physical Review,1961,124(6):1866-1878. DOI: 10.1103/PhysRev.124.1866
|
[18] |
MIROSHNICHENKO A E,FLACH S,KIVSHAR Y S. Fano resonances in nanoscale structures [J]. Reviews of Modern Physics,2010,82(3). DOI: 10.1103/RevModPhys.82.2257.
|
[19] |
FEDOTOV V A,PAPASIMAKIS N,PLUM E,et al. Spectral collapse in ensembles of metamolecules[J]. Physical Review Letters,2010,104(22). DOI: 10.1103/PhysRevLett.104.223901.
|
[20] |
YUAN Shuai,QIU Xingzhi,CUI Chengcong,et al. Strong photoluminescence enhancement in all-dielectric fano metasurface with high quality factor[J]. ACS Nano,2017,11(11):10704-10711. DOI: 10.1021/acsnano.7b04810
|
[21] |
YANG Jianchun,ZHOU Lang,CHE Xin,et al. Photonic crystal fiber methane sensor based on modal interference with an ultraviolet curable fluoro-siloxane nano-film incorporating cryptophane A[J]. Sensors and Actuators B:Chemical,2016,235:717-722. DOI: 10.1016/j.snb.2016.05.125
|
1. |
王泽斌. 选煤厂漏电保护系统设计与试验. 江西煤炭科技. 2023(01): 220-221+224 .
![]() | |
2. |
冯小平. 煤矿井下馈电开关保护装置研究. 煤. 2023(04): 102-104 .
![]() | |
3. |
刘鹏强. 煤矿井下低压电网漏电保护技术研究. 矿业装备. 2023(03): 98-100 .
![]() | |
4. |
王恩光. 煤矿井下低压电网漏电保护技术研究. 矿业装备. 2023(07): 114-116 .
![]() | |
5. |
王泽龙. 建筑电气施工中漏电保护技术应用实践. 江西建材. 2023(07): 234-236 .
![]() | |
6. |
李建云. 一种矿用馈电开关保护装置的质量设计探析. 中国石油和化工标准与质量. 2022(13): 127-129 .
![]() | |
7. |
杜威. 煤矿低压电网漏电保护技术研究. 矿业装备. 2022(04): 190-192 .
![]() | |
8. |
赵小平,韩晨霞,马晟,高涛. 矿用馈电开关保护装置设计研究. 能源与环保. 2021(06): 197-200+206 .
![]() | |
9. |
曹建文. 矿井低压电网选择性漏电保护装置设计. 煤矿机电. 2021(03): 15-18 .
![]() | |
10. |
黎青. 采煤机用变频调速系统漏电保护技术发展及应用. 煤矿机械. 2021(11): 137-140 .
![]() | |
11. |
文金忠,张立中,刘建洪,张文宏,魏振富. 煤矿井下低压电网漏电保护技术研究与应用. 能源与环保. 2021(08): 154-157 .
![]() | |
12. |
王清亮,杨博,高梅,刘新茹,李磊,郝兆明. 基于等效电导的矿井电网智能漏电保护方法. 工矿自动化. 2020(06): 59-64 .
![]() | |
13. |
贾补亮. 井下漏电保护系统研究. 能源与节能. 2020(10): 133-134 .
![]() | |
14. |
韩涛. 选煤厂漏电保护系统研究. 自动化应用. 2020(10): 109-111 .
![]() |