FANG Xinqiu, FENG Haotian, LIANG Minfu, et al. Key technology system of fiber optic sensing for intelligent coal mining[J]. Journal of Mine Automation,2023,49(6):78-87. DOI: 10.13272/j.issn.1671-251x.18107
Citation: FANG Xinqiu, FENG Haotian, LIANG Minfu, et al. Key technology system of fiber optic sensing for intelligent coal mining[J]. Journal of Mine Automation,2023,49(6):78-87. DOI: 10.13272/j.issn.1671-251x.18107

Key technology system of fiber optic sensing for intelligent coal mining

More Information
  • Received Date: April 14, 2023
  • Revised Date: May 10, 2023
  • Available Online: June 29, 2023
  • Intelligent perception is the primary link in intelligent coal mining, providing data support for intelligent decision-making and control. Fiber optic sensing technology provides a solution for intelligent perception in coal mining due to its advantages such as high precision, strong anti-interference capability and environmental tolerance, and flexible and diverse network reuse methods. On the basis of studying the principle of optical fiber sensing technology, the sensing information transmission model between fiber grating and the substrate is constructed. The fiber grating packaging technologies of surface pasted type, grooved landfill type, and surface pasted substrate type are proposed. The spectral reconstruction and temperature compensation are studied to ensure high-precision data perception. The high-precision fiber grating borehole stress sensor, bolt stress sensor, bolt force sensor, roof separation sensor, temperature sensor and other intelligent sensing sensors for mining environment are developed. The fiber grating support tilt sensor, support pressure sensor, curvature sensor and other posture sensing sensors for coal mining working face equipment are also developed as well as fiber grating sensor calibration workbench. They are intelligent sensing equipment based on fiber optic sensing technology for the construction of intelligent coal mining faces. Multiple fiber grating sensors are integrated to construct an intelligent multi-parameter perception system based on fiber grating for coal mining environment and working face equipment posture. It solves problems such as the large capacity of multiple sources and heterogeneity of sensing data, difficulty in reusing sensing equipment, and difficulty in networking during coal mining process. A coal mining environmental safety warning and equipment posture decision-making system software is developed. It forms a coal mining safety decision-making system that integrates intelligent "fiber grating perception - dynamic response - precursor warning - safety decision-making". The analysis points out that the development of special material fiber optic products suitable for multiple scenarios, packaging technology suitable for coal mining needs, and demodulation instrument hardware that balances precision and cost will help to promote the application of fiber optic sensing technology in information perception in intelligent coal mining.
  • [1]
    国家发展改革委, 国家能源局, 应急管理部, 等. 关于印发《关于加快煤矿智能化发展的指导意见》的通知[EB/OL]. (2020-03-02)[2023-04-09]. https:/www.ndrc.gov.cn/xxgk/zcfb/tz/202007/t20200710_1233536.html?code=&state=123.htm.

    National Development and Reform Commission, National Energy Administration, Emergency Department, et al. Notice on printing and distributing The guiding opinions on accelerating the development of intelligent coal mines[EB/OL]. (2020-03-02)[2023-04-09]. http://www.gov.cn/zhengce/zhengceku/2020-03/05/content_5487081.htm.
    [2]
    王国法,徐亚军,孟祥军,等. 智能化采煤工作面分类、分级评价指标体系[J]. 煤炭学报,2020,45(9):3033-3044.

    WANG Guofa,XU Yajun,MENG Xiangjun,et al. Specification,classification and grading evaluation index for smart longwall mining face[J]. Journal of China Coal Society,2020,45(9):3033-3044.
    [3]
    施斌,朱鸿鹄,张丹,等. 从岩土体原位检测、探测、监测到感知[J]. 工程地质学报,2022,30(6):1811-1818.

    SHI Bin,ZHU Honghu,ZHANG Dan,et al. From in-situ rock-and-soil testing,exploration,monitoring to sensing[J]. Journal of Engineering Geology,2022,30(6):1811-1818.
    [4]
    CHEN Ningning, FANG Xinqiu, LIANG Minfu, et al. Research on hydraulic support attitude monitoring method merging FBG sensing technology and AdaBoost algorithm[J]. Sustainability, 2023, 15(3). DOI: 10.3390/su15032239.
    [5]
    KLAR A, NISSIM O, ELKAYAM I. A hardening load transfer function for rock bolts and its calibration using distributed fiber optic sensing [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2023. DOI: 10.1016/j.jrmge.2022.12.027.
    [6]
    柴敬,刘泓瑞,张丁丁,等. 覆岩载荷扰动下平硐围岩变形分析及支护优化[J]. 工矿自动化,2023,49(3):13-22.

    CHAI Jing,LIU Hongrui,ZHANG Dingding,et al. Deformation analysis and support optimization of adit surrounding rock under overburden load disturbance[J]. Journal of Mine Automation,2023,49(3):13-22.
    [7]
    李虎威,方新秋,梁敏富,等. 基于光纤光栅的围岩应力监测技术研究[J]. 工矿自动化,2015,41(11):17-20.

    LI Huwei,FANG Xinqiu,LIANG Minfu,et al. Research on monitoring technology of surrounding rock stress based on fiber grating[J]. Industry and Mine Automation,2015,41(11):17-20.
    [8]
    朱鸿鹄,王佳,李厚芝,等. 基于数据挖掘的三峡库区特大滑坡变形关联规则研究[J]. 工程地质学报,2022,30(5):1517-1527.

    ZHU Honghu,WANG Jia,LI Houzhi,et al. Association rule analysis for giant landslide deformation of the three gorges reservoir region based on data mining[J]. Journal of Engineering Geology,2022,30(5):1517-1527.
    [9]
    李延河, 杨战标, 朱元广, 等. 基于弱光纤光栅传感技术的围岩变形监测研究[J/OL]. 煤炭科学技术, 2022: 1-9 [2023-04-09]. http://kns.cnki.net/kcms/detail/11.2402.td.20220826.1716.006.html.

    LI Yanhe, YANG Zhanbiao, ZHU Yuanguang, et al. Research on deformation monitoring of surrounding rock based on weak fiber grating sensing technology[J/OL]. Coal Science and Technology, 2022: 1-9 [2023-04-09]. http://kns.cnki.net/kcms/detail/11.2402.td.20220826.1716.006.html.
    [10]
    刘统玉,王兆伟,李振,等. 激光/光纤传感技术研究及其在煤矿安全监测预警中的应用[J]. 激光与光电子学进展,2021,58(13):233-243.

    LIU Tongyu,WANG Zhaowei,LI Zhen,et al. Advance of laser and fiber optic sensors for applications of coal mine safety monitoring and early warning[J]. Laser & Optoelectronics Progress,2021,58(13):233-243.
    [11]
    SONG Yang, FANG Xinqiu, WU Gang, et al. Research on straightness perception compensation model of FBG scraper conveyor based on rotation error angle[J]. Sensors (Basel), 2022, 22(17). DOI: 10.3390/s22176399.
    [12]
    张平松,张丹,孙斌杨,等. 巷道断面空间岩层变形与破坏演化特征光纤监测研究[J]. 工程地质学报,2019,27(2):260-266.

    ZHANG Pingsong,ZHANG Dan,SUN Binyang,et al. Optical fiber monitoring technology for evolution characteristic of rock stratum deformation and stratum deformation and failure in space of mining field[J]. Journal of Engineering Geology,2019,27(2):260-266.
    [13]
    侯公羽,胡涛,徐桂城,等. 基于分布式光纤技术的煤矿巷道顶板监测系统[J]. 工矿自动化,2020,46(1):1-6.

    HOU Gongyu,HU Tao,XU Guicheng,et al. Coal mine roadway roof monitoring system based on distributed optical fiber technology[J]. Industry and Mine Automation,2020,46(1):1-6.
    [14]
    FANG Xinqiu, ZHANG Fan, SHI Zongshen, et al. Research and application of multi-mode joint monitoring system for shaft wall deformation [J]. Sensors (Basel), 2022, 22(17). DOI: 10.3390/s22176551.
    [15]
    王德堂,李海伟,王公华,等. 用于矿井提升机钢丝绳张力测量的光纤光栅传感器设计[J]. 工矿自动化,2018,44(2):106-110.

    WANG Detang,LI Haiwei,WANG Gonghua,et al. Design of fiber grating sensor for steel wire rope tension measurement of mine hoist[J]. Industry and Mine Automation,2018,44(2):106-110.
    [16]
    LIANG Minfu,FANG Xinqiu,WU Gang,et al. A fiber Bragg grating pressure sensor with temperature compensation based on diaphragm-cantilever structure[J]. Optik,2017,145:503-512. DOI: 10.1016/j.ijleo.2017.08.014
    [17]
    苑立波,童维军,江山,等. 我国光纤传感技术发展路线图[J]. 光学学报,2022,42(1):9-42.

    YUAN Libo,TONG Weijun,JIANG Shan,et al. Road map of fiber optic sensor technology in China[J]. Acta Optica Sinica,2022,42(1):9-42.
    [18]
    方新秋,何杰,张斌,等. 无人工作面采煤机自主定位系统[J]. 西安科技大学学报,2008(2):349-353.

    FANG Xinqiu,HE Jie,ZHANG Bin,et al. Self-positioning system of the shearer in unmanned workface[J]. Journal of Xi'an University of Science and Technology,2008(2):349-353.
    [19]
    方新秋,何杰,郭敏江,等. 煤矿无人工作面开采技术研究[J]. 科技导报,2008(9):56-61.

    FANG Xinqiu,HE Jie,GUO Minjiang,et al. Study on unmanned workface mining technology[J]. Science & Technology Review,2008(9):56-61.
    [20]
    梁敏富,方新秋,薛广哲,等. 光纤光栅测力锚杆的标定试验[J]. 煤矿安全,2015,46(1):44-46.

    LIANG Minfu,FANG Xinqiu,XUE Guangzhe,et al. Calibration test of force-measuring bolt based on fiber grating[J]. Safety in Coal Mines,2015,46(1):44-46.
    [21]
    梁敏富. 煤矿开采多参量光纤光栅智能感知理论及关键技术[D]. 徐州: 中国矿业大学, 2019.

    LIANG Minfu. Intelligent sensing theory and key technologies of multi-parameter fiber Bragg grating in coal mining[D]. Xuzhou: China University of Mining and Technology, 2019.
    [22]
    权志桥,方新秋,薛广哲,等. 表面粘贴布拉格光纤光栅传感器的应变传递耦合机理研究[J]. 中国激光,2020,47(1):163-172.

    QUAN Zhiqiao,FANG Xinqiu,XUE Guangzhe,et al. Strain transfer coupling mechanism of surface-bonded fiber Bragg grating sensor[J]. Chinese Journal of Lasers,2020,47(1):163-172.
    [23]
    LIANG Minfu,CHEN Ningning,FANG Xinqiu,et al. Strain transferring mechanism analysis of the surface-bonded FBG sensor[J]. Applied Optics,2018,57(20):5837-5843. DOI: 10.1364/AO.57.005837
    [24]
    梁敏富,方新秋,陈宁宁,等. 表贴式光纤光栅锚杆应变感知机理与应用研究[J]. 中国矿业大学学报,2018,47(6):1243-1251.

    LIANG Minfu,FANG Xinqiu,CHEN Ningning,et al. Strain sensing mechanism of surface bonded fiber Bragg grating bolt and its application[J]. Journal of China University of Mining & Technology,2018,47(6):1243-1251.
    [25]
    薛广哲. 巷道锚固岩体的光纤光栅智能感知机制及应用研究[D]. 徐州: 中国矿业大学, 2019.

    XUE Guangzhe. Research on mechanism and application of intelligent sensing of roadway anchored rock mass based on FBG[D]. Xuzhou: China University of Mining and Technology, 2019.
    [26]
    梁敏富,方新秋,薛广哲,等. FBG锚杆测力计研制及现场试验[J]. 采矿与安全工程学报,2017,34(3):549-555.

    LIANG Minfu,FANG Xinqiu,XUE Guangzhe,et al. Development of anchor dynamometer of FBG and its field test[J]. Journal of Mining & Safety Engineering,2017,34(3):549-555.
    [27]
    LIANG Minfu,FANG Xinqiu,NING Yaosheng. Temperature compensation fiber Bragg grating pressure sensor based on plane diaphragm[J]. Photonic Sensors,2018,8(2):157-167. DOI: 10.1007/s13320-018-0417-9
    [28]
    梁敏富,方新秋,柏桦林,等. 温补型光纤Bragg光栅压力传感器在锚杆支护质量监测中的应用[J]. 煤炭学报,2017,42(11):2826-2833.

    LIANG Minfu,FANG Xinqiu,BAI Hualin,et al. Application of temperature compensation fiber Bragg grating pressure sensor for bolting quality monitoring[J]. Journal of China Coal Society,2017,42(11):2826-2833.
    [29]
    方新秋,梁敏富,李爽,等. 智能工作面多参量精准感知与安全决策关键技术[J]. 煤炭学报,2020,45(1):493-508.

    FANG Xinqiu,LIANG Minfu,LI Shuang,et al. Key technologies of multi-parameter accurate perception and security decision in intelligent working face[J]. Journal of China Coal Society,2020,45(1):493-508.
    [30]
    LIANG Minfu, SONG Yang, FANG Xinqiu, et al. Structural design and application of desensitized FBG force-measuring bolt[J]. Sensors (Basel), 2022, 22(10). DOI: 10.3390/s22103930.
    [31]
    LIANG Minfu, FANG Xinqiu, CHEN Ningning, et al. A sensing mechanism and the application of a surface-bonded FBG dynamometry bolt[J]. Applied Sciences, 2022, 12(7). DOI: 10.3390/app12073225.
    [32]
    LIANG Minfu, FANG Xinqiu. Application of fiber Bragg grating sensing technology for bolt force status monitoring in roadways[J]. Applied Sciences, 2018, 8(1). DOI: 10.3390/app8010107.
    [33]
    李虎威,方新秋,梁敏富. 基于光纤光栅传感技术的顶板离层监测系统[J]. 煤矿安全,2016,47(4):143-145.

    LI Huwei,FANG Xinqiu,LIANG Minfu. Roof separation monitoring system based on fiber grating sensor technology[J]. Safety in Coal Mines,2016,47(4):143-145.
    [34]
    王国法. 煤矿智能化最新技术进展与问题探讨[J]. 煤炭科学技术,2022,50(1):1-27.

    WANG Guofa. New technological progress of coal mine intelligence and its problems[J]. Coal Science and Technology,2022,50(1):1-27.
    [35]
    LIANG Minfu,FANG Xinqiu,LI Shuang,et al. A fiber Bragg grating tilt sensor for posture monitoring of hydraulic supports in coal mine working face[J]. Measurement,2019,138:305-313. DOI: 10.1016/j.measurement.2019.02.060
    [36]
    方新秋,梁敏富,邢晓鹏,等. 光纤光栅支架压力表的研制及性能测试[J]. 采矿与安全工程学报,2018,35(5):945-952.

    FANG Xinqiu,LIANG Minfu,XING Xiaopeng,et al. Development of hydraulic support pressure gauge based on FBG and its performance test[J]. Journal of Mining & Safety Engineering,2018,35(5):945-952.
    [37]
    方新秋,宁耀圣,李爽,等. 基于光纤光栅的刮板输送机直线度感知关键技术研究[J]. 煤炭科学技术,2019,47(1):152-158.

    FANG Xinqiu,NING Yaosheng,LI Shuang,et al. Research on key technique of straightness perception of scraper conveyor based on fiber grating[J]. Coal Science and Technology,2019,47(1):152-158.
    [38]
    方新秋,冯豪天,梁敏富,等. 煤矿开采光纤光栅智能感知与安全决策关键技术研究[J]. 中国煤炭,2022,48(11):46-56.

    FANG Xinqiu,FENG Haotian,LIANG Minfu,et al. Research on key technologies of fiber Bragg grating intelligent sensing and safety decision in coal mining[J]. China Coal,2022,48(11):46-56.
    [39]
    胡秀坤. 基于光纤光栅传感器的巷道矿压在线监测系统构建及应用[D]. 徐州: 中国矿业大学, 2017.

    HU Xiukun. Construction and application of on-line roadway mine pressure monitoring system based on fiber bragg grating sensors[D]. Xuzhou: China University of Mining and Technology, 2017.
    [40]
    吴刚. 基于捷联惯导的采煤机运行姿态高精度感知理论与技术研究[D]. 徐州: 中国矿业大学, 2020.

    WU Gang. Research on high precision sensing theory operating attitude and technology of shearer based on SINS[D]. Xuzhou: China University of Mining and Technology, 2020.
    [41]
    高有进,杨艺,常亚军,等. 综采工作面智能化关键技术现状与展望[J]. 煤炭科学技术,2021,49(8):1-22.

    GAO Youjin,YANG Yi,CHANG Yajun,et al. Status and prospect of key technologies of intelligentization of fully-mechanized coal mining face[J]. Coal Science and Technology,2021,49(8):1-22.
    [42]
    WU Gang, FANG Xinqiu, SONG Yang, et al. Study on the shearer attitude sensing error compensation method based on strapdown inertial navigation system[J]. Applied Sciences, 2022, 12(21). DOI: 10.3390/app122110848.
    [43]
    WU Gang, FANG Xinqiu, ZHANG Lei, et al. Positioning accuracy of the shearer based on a strapdown inertial navigation system in underground coal mining[J]. Applied Sciences, 2020, 10(6). DOI: 10.3390/app10062176.
    [44]
    杜毅博,赵国瑞,巩师鑫. 智能化煤矿大数据平台架构及数据处理关键技术研究[J]. 煤炭科学技术,2020,48(7):177-185.

    DU Yibo,ZHAO Guorui,GONG Shixin. Study on big data platform architecture of intelligent coal mine and key technologies of data processing[J]. Coal Science and Technology,2020,48(7):177-185.
  • Related Articles

    [1]MA Changqing, LI Xuyang, LI Feng, MAO Junjie, WEI Xiangyu, MA Xiaoyang. Precise perception method for position and posture of hydraulic supports based on multi-sensor fusion[J]. Journal of Mine Automation, 2025, 51(4): 114-119. DOI: 10.13272/j.issn.1671-251x.2025010040
    [2]ZHANG Xuejun, LI Zhuofang. Intelligent risk classification,decision-making and early warning system for coal mine with multi-parameter composite[J]. Journal of Mine Automation, 2024, 50(S1): 88-91.
    [3]MA Aiqiang, YAO Wanqiang. Multi sensor adaptive fusion SLAM method for underground mobile robots in coal mines[J]. Journal of Mine Automation, 2024, 50(5): 107-117. DOI: 10.13272/j.issn.1671-251x.2024050031
    [4]YANG Zhifang. Bimodal environment perception technology for underground coal mine based on radar and visual fusion[J]. Journal of Mine Automation, 2023, 49(11): 67-75. DOI: 10.13272/j.issn.1671-251x.2023080073
    [5]HU Qingsong, MENG Chunlei, LI Shiyin, SUN Yanjing. Research status and prospects of perception technology for unmanned mining vehicle driving environment[J]. Journal of Mine Automation, 2023, 49(6): 128-140. DOI: 10.13272/j.issn.1671-251x.18115
    [6]WANG Hongwei, QIE Chenfei, FU Xiang, LI Jin, WANG Haoran. Intelligent decision-making model of multi-behavior collaborative control in coal mine excavation[J]. Journal of Mine Automation, 2023, 49(6): 120-127. DOI: 10.13272/j.issn.1671-251x.18114
    [7]WANG Jiqiang, LI Zhen, MENG Hui, HOU Moyu, DONG Guofeng, YANG Qingshan, LIU Tongyu. Design of mine-used hot-wire-based optical fiber wind speed sensor[J]. Journal of Mine Automation, 2021, 47(5): 30-34. DOI: 10.13272/j.issn.1671-251x.17740
    [8]ZHANG Pengpeng, YU Along, SUN Shiyu, XU Dongping. Application of multi-sensor data fusion in mine safety monitoring[J]. Journal of Mine Automation, 2015, 41(12): 5-8. DOI: 10.13272/j.issn.1671-251x.2015.12.002
    [9]LIU Kai, GUO Yongyi, WU Shiyue. Research of hierarchical multi-sensor data fusion model for coal mine safety monitoring[J]. Journal of Mine Automation, 2014, 40(6): 45-50. DOI: 10.13272/j.issn.1671-251x.2014.06.012
    [10]LEI Meng, Ren Zi-hui. Establishing of Fault-diagnosis Model for Main Ventilator of Mine Based on Information Fusion Technology of Multi-sensor[J]. Journal of Mine Automation, 2007, 33(5): 62-64.
  • Cited by

    Periodical cited type(1)

    1. 邢萌. 临空回采巷道注浆锚索锚注分析及变形控制研究. 煤炭与化工. 2024(12): 43-47 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (968) PDF downloads (88) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return