CAO Zhengyuan, JIANG Wei, FANG Chenghui. Intelligent detection method for coal flow foreign objects based on dual attention generative adversarial network[J]. Journal of Mine Automation,2023,49(12):56-62. DOI: 10.13272/j.issn.1671-251x.18094
Citation: CAO Zhengyuan, JIANG Wei, FANG Chenghui. Intelligent detection method for coal flow foreign objects based on dual attention generative adversarial network[J]. Journal of Mine Automation,2023,49(12):56-62. DOI: 10.13272/j.issn.1671-251x.18094

Intelligent detection method for coal flow foreign objects based on dual attention generative adversarial network

More Information
  • Received Date: March 26, 2023
  • Revised Date: December 17, 2023
  • Available Online: January 02, 2024
  • Foreign objects mixed in during coal mining may cause accidents such as blockage or even tearing of conveyor belt connections. Most existing machine learning algorithms for coal flow foreign objects use supervised learning to automatically recoginze item categories. However, in real industrial and mining scenarios, the scarcity of abnormal samples leads to problems of serious imbalanced sample distribution and significant features lost in the modeling dataset. In order to solve the above problems, a coal flow foreign object intelligent detection method based on dual-attention Skip-GANomaly (DA-GANomaly) is proposed. This method adopts a semi supervised learning approach, which only requires normal samples to complete the training of the foreign object detection model, effectively solving the problems of low recognition accuracy and poor robustness caused by imbalanced sample distribution. On the basis of Skip-GANomaly, a dual attention mechanism is introduced to enhance the information exchange between the encoder and decoder and suppress irrelevant features and noise. It highlights the interesting features that are conducive to distinguishing abnormal samples, and further improves the accuracy of model classification. The experimental results show that the classification accuracy of the DA-GANomaly model is 79.5%, the recall rate is 83.2%, and the area under the precision recall curve (AUPRC) is 85.1%. Compared with 5 classic anomaly detection models such as AnoGAN, the DA-GANomaly model has the best overall performance.

  • [1]
    程德强,徐进洋,寇旗旗,等. 融合残差信息轻量级网络的运煤皮带异物分类[J]. 煤炭学报,2022,47(3):1361-1369.

    CHENG Deqiang,XU Jinyang,KOU Qiqi,et al. Lightweight network based on residual information for foreign body classification on coal conveyor belt[J]. Journal of China Coal Society,2022,47(3):1361-1369.
    [2]
    孟晓娟,张月琴,郝晓丽,等. 多分类深度卷积生成对抗网络的皮带撕裂检测[J]. 计算机工程与应用,2021,57(16):269-275.

    MENG Xiaojuan,ZHANG Yueqin,HAO Xiaoli,et al. Multi-class deep convolutional generative adversarial networks for belt tear detection[J]. Computer Engineering and Applications,2021,57(16):269-275.
    [3]
    RONG Dian,XIE Lijuan,YING Yibin. Computer vision detection of foreign objects in walnuts using deep learning[J]. Computers and Electronics in Agriculture,2019,162:1001-1010. DOI: 10.1016/j.compag.2019.05.019
    [4]
    王卫东,张康辉,吕子奇,等. 基于深度学习的煤中异物机器视觉检测[J]. 矿业科学学报,2021,6(1):115-123.

    WANG Weidong,ZHANG Kanghui,LYU Ziqi,et al. Machine vision detection of foreign objects in coal using deep learning[J]. Journal of Mining Science and Technology,2021,6(1):115-123.
    [5]
    王超,郝博南,张立亚,等. 基于RetinaNet的煤矿井下输送带异物检测技术[J]. 煤矿机械,2022,43(12):180-183.

    WANG Chao,HAO Bonan,ZHANG Liya,et al. Conveyor belt foreign object detection technology based on RetinaNet in underground coal mine[J]. Coal Mine Machinery,2022,43(12):180-183.
    [6]
    王燕,郭潇樯,刘新华. 带式输送机大块异物视觉检测系统设计[J]. 机械科学与技术,2021,40(12):1939-1943.

    WANG Yan,GUO Xiaoqiang,LIU Xinhua. Design of visual detection system for large foreign body in belt conveyor[J]. Mechanical Science and Technology for Aerospace Engineering,2021,40(12):1939-1943.
    [7]
    薛旭升,杨星云,齐广浩,等. 煤矿带式输送机分拣机器人异物识别与定位系统设计[J]. 工矿自动化,2022,48(12):33-41. DOI: 10.13272/j.issn.1671-251x.2022100024

    XUE Xusheng,YANG Xingyun,QI Guanghao,et al. Design of foreign object recognition and positioning system for sorting robot of coal mine belt conveyor[J]. Journal of Mine Automation,2022,48(12):33-41. DOI: 10.13272/j.issn.1671-251x.2022100024
    [8]
    郝帅,张旭,马旭,等. 基于CBAM−YOLOv5的煤矿输送带异物检测[J]. 煤炭学报,2022,47(11):4147-4156.

    HAO Shuai,ZHANG Xu,MA Xu,et al. Foreign object detection in coal mine conveyor belt based on CBAM-YOLOv5[J]. Journal of China Coal Society,2022,47(11):4147-4156.
    [9]
    武红鑫,韩萌,陈志强,等. 监督和半监督学习下的多标签分类综述[J]. 计算机科学,2022,49(8):12-25.

    WU Hongxin,HAN Meng,CHEN Zhiqiang,et al. Survey of multi-label classification based on supervised and semi-supervised learning[J]. Computer Science,2022,49(8):12-25.
    [10]
    SCHLEGL T,SEEBÖCK P,WALDSTEIN S M,et al. Unsupervised anomaly detection with generative adversarial networks to guide marker discovery[C].25th International Conference on Information Processing in Medical Imaging,Boone,2017:146-157.
    [11]
    AKCAY S,ATAPOUR-ABARGHOUEI A,BRECKON T P. GANomaly:semi-supervised anomaly detection via adversarial training[C].14th Asian Conference on Computer Vision,Perth,2018:622-637.
    [12]
    AKÇAY S,ATAPOUR-ABARGHOUEI A,BRECKON T P. Skip-GANomaly:skip connected and adversarially trained encoder-decoder anomaly detection[C].International Joint Conference on Neural Networks,Budapest,2019:1-8.
    [13]
    RONNEBERGER O,FISCHER P,BROX T. U-net:convolutional networks for biomedical image segmentation[C].18th International Conference on Medical Image Computing and Computer-Assisted Intervention,Munich,2015:234-241.
    [14]
    杜京义,陈瑞,郝乐,等. 煤矿带式输送机异物检测[J]. 工矿自动化,2021,47(8):77-83.

    DU Jingyi,CHEN Rui,HAO Le,et al. Coal mine belt conveyor foreign object detection[J]. Industry and Mine Automation,2021,47(8):77-83.
    [15]
    王涛. 机器视觉技术在煤矿胶带运输系统中的应用[J]. 能源科技,2021,19(2):34-40.

    WANG Tao. Application of the machine vision technology in the belt conveyor system for coal mines[J]. Energy Science and Technology,2021,19(2):34-40.
    [16]
    GUO Menghao,XU Tianxing,LIU Jiangjiang,et al. Attention mechanisms in computer vision:a survey[J]. Computational Visual Media,2022(3):331-368.
    [17]
    RAMACHANDRAN P,PARMAR N,VASWANI A,et al. Stand-alone self-attention in vision models[EB/OL]. [2023-03-22]. https://arxiv.org/abs/1906.05909.
    [18]
    FU Jun,LIU Jing,TIAN Haijie,et al. Dual attention network for scene segmentation[C].IEEE/CVF Conference on Computer Vision and Pattern Recognition,Salt Lake City,2019:3146-3154.
    [19]
    ZOU Liang,YU Xinhui,LI Ming,et al. Nondestructive identification of coal and gangue via near-infrared spectroscopy based on improved broad learning[J]. IEEE Transactions on Instrumentation and Measurement,2020,69(10):8043-8052.
    [20]
    ZENATI H,FOO C S,LECOUAT B,et al. Efficient GAN-based anomaly detection[EB/OL]. [2023-03-22]. https://arxiv.org/abs/1802.06222v1.
    [21]
    ZENATI H,ROMAIN M,FOO C S,et al. Adversarially learned anomaly detection[C].IEEE International Conference on Data Mining,Singapore,2018:727-736.
  • Related Articles

    [1]XIAO Yu, LI Zehao, WANG Chao. Unsupervised learning-based panoramic unfolded image stitching method for rock mass borehole wall[J]. Journal of Mine Automation, 2025, 51(5): 80-86. DOI: 10.13272/j.issn.1671-251x.2024100008
    [2]YAN Li, WEN Hu, WANG Zhenping, JIN Yongfei. Evaluation method for gas pre-extraction status in coal seam boreholes based on semi-supervised learning[J]. Journal of Mine Automation, 2025, 51(3): 113-121. DOI: 10.13272/j.issn.1671-251x.2025020046
    [3]WANG Anyi, LI Xinyu, LI Mingzhu, LI Ruoman. Channel estimation method for IRS assisted mine communication system based on self supervised learning[J]. Journal of Mine Automation, 2024, 50(8): 144-150. DOI: 10.13272/j.issn.1671-251x.2024070038
    [4]YE Ou, DOU Xiaoyi, FU Yan, DENG Jun. Coal block detection method integrating lightweight network and dual attention mechanism[J]. Journal of Mine Automation, 2021, 47(12): 75-80. DOI: 10.13272/j.issn.1671-251x.2021030075
    [5]LI Qingyuan, YANG Yi, LI Huamin, FEI Shumin. Intelligent control strategy for top coal caving based on Q-learning model[J]. Journal of Mine Automation, 2020, 46(1): 72-79. DOI: 10.13272/j.issn.1671-251x.2019110001
    [6]CAO Wenyan, WANG Ranfeng, FAN Minqiang, FU Xiang, WANG Yulong. Coal slime flotation foam image classification method based on semi-supervised clustering[J]. Journal of Mine Automation, 2019, 45(7): 38-42. DOI: 10.13272/j.issn.1671-251x.17437
    [7]SUN Yun-xiao, FANG Jian, MA Xiao-ping. Research of Prediction of Coal and Gas Outburst Based on Semi-supervised Learning and Support Vector Machine[J]. Journal of Mine Automation, 2012, 38(11): 40-42.
    [8]ZHANG Qian, LI Ming, WANG Xue-song. Research of Semi-supervised Regression Algorithm Based on Density Distributio[J]. Journal of Mine Automation, 2012, 38(3): 29-30.
    [9]WANG Yong, CHENG Can, DAI Ming-jun, SUN Yong. An Optimized Method for Semi-supervised Support Vector Machines[J]. Journal of Mine Automation, 2010, 36(12): 47-50.
    [10]WANG Yu-hong, HAO Yi-kui. Application of Supervised Learning in Building Model of Extraction of Gas Disaster Informatio[J]. Journal of Mine Automation, 2008, 34(2): 8-12.
  • Cited by

    Periodical cited type(12)

    1. 朱峰林. 采煤机光纤复合橡套软电缆的研制. 电线电缆. 2025(06)
    2. 郎瑞峰,张宁波,王振刚,杨文帅,陈宁宁. 智能工作面刮板输送机形态三维重构关键技术研究. 煤矿机械. 2025(02): 207-212 .
    3. 仵书婷,员晓,廖星,杨鑫,杨玉玉. 基于光纤光栅的煤矿围岩状态监测系统的研究及应用. 陕西煤炭. 2025(01): 152-156+164 .
    4. 冯豪天,方新秋,乔富康,陈宁宁,宋扬,贺德幸,梁敏富,吴刚,吴洋. 煤矿开采光纤智能感知关键技术体系. 河南理工大学学报(自然科学版). 2025(03): 34-43 .
    5. 孟刚,武向强. 邹庄煤矿7401工作面采空区动态自燃“三带”变化规律研究. 采矿技术. 2024(02): 165-172 .
    6. 陈见行,王世纪. 数值分析课程线上授课方式探索. 创新创业理论研究与实践. 2024(08): 55-57+96 .
    7. 万蕾,张成. 煤矿智能化开采技术研究. 内蒙古煤炭经济. 2024(08): 43-45 .
    8. 贾思学,王雷. 光纤传感技术在矿山安全监测中的应用探究. 中国设备工程. 2024(11): 173-175 .
    9. 葛毓,罗超. 多通道光栅传感解调系统的信号同步分析. 激光杂志. 2024(10): 186-191 .
    10. 姜建邦,司栋. 基于光纤传感技术的煤矿机电设备监控应用. 内蒙古煤炭经济. 2024(23): 157-159 .
    11. 邢翔宇,尤宏伟,王森,王一川. 光纤光栅传感器在煤矿35 kV开关柜中温度监测的应用研究. 当代化工研究. 2024(24): 128-130 .
    12. 杨万海. 智能化采煤工作面建设关键技术应用. 价值工程. 2023(36): 157-159 .

    Other cited types(3)

Catalog

    FANG Chenghui

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (181) PDF downloads (27) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return