QIAO Jiawei, TIAN Muqin. Health condition assessment of centrifugal pump based on AHP-TOPSIS comprehensive evaluation method[J]. Journal of Mine Automation,2022,48(9):69-76. DOI: 10.13272/j.issn.1671-251x.17984
Citation: QIAO Jiawei, TIAN Muqin. Health condition assessment of centrifugal pump based on AHP-TOPSIS comprehensive evaluation method[J]. Journal of Mine Automation,2022,48(9):69-76. DOI: 10.13272/j.issn.1671-251x.17984

Health condition assessment of centrifugal pump based on AHP-TOPSIS comprehensive evaluation method

More Information
  • Received Date: July 05, 2022
  • Revised Date: September 01, 2022
  • Available Online: September 23, 2022
  • In view of the problem of centrifugal pump impeller wear, the existing research mostly concentrates on numerical simulation analysis, vibration signal analysis and wear detection of impeller wear. There are few studies on the working condition parameters of centrifugal pump under impeller wear. In order to solve this problem, a health condition assessment method of centrifugal pump based on analytic hierarchy process (AHP) and technique for order preference by similarity to ideal solution (TOPSIS) is proposed. Firstly, according to the operating conditions of centrifugal pump and the performance requirements of centrifugal pump, the operating parameters (flow, head, efficiency and shaft power) characterizing the health condition of centrifugal pump are determined. Secondly, the outer diameter and the specific speed of the impeller are taken as the evaluation indexes of the working condition parameters. The weight values of each working condition parameter to the health condition of the centrifugal pump are determined by using the AHP and the super-transitive approximate method. Finally, the working condition parameters of the centrifugal pump are evaluated by TOPSIS comprehensive evaluation method. The health condition score of the centrifugal pump is obtained by weighted summation, to realize the health condition evaluation of the centrifugal pump. Taking the IS-100-80-125 single-stage centrifugal pump as the research object, the outer diameter of the impeller is worn from 125 mm to 87 mm, and the working parameters of the centrifugal pump with different outer diameters of the impeller are obtained. The working parameters and the health condition of the centrifugal pump are evaluated by the AHP-TOPSIS comprehensive evaluation method. The results show that there is a linear relationship between impeller wear and centrifugal pump health. With the increasing wear of impeller, the drainage capacity of centrifugal pump decreases. The evaluation results are in line with the actual situation of the centrifugal pump, which proves the rationality and feasibility of this method.
  • [1]
    国家煤矿安全监察局. 国家煤矿安全监察局关于印发《煤矿防治水细则》的通知(煤安监调查〔2018〕14号)[EB/OL]. (2018-06-06)[2022-05-23]. http://www.gov.cn/zhengce/zhengceku/2018-12/31/content_5448431.htm.

    National Coal Mine Safety Administration. Notice of the National Coal Mine Safety Administration on the Issuance of Rules for the Prevention and Control of Water in Coal Mines (Coal Safety Supervision Investigation [2018] No.14) [EB/OL]. (2018-06-06) [2022-05-23]. http//www.gov.cn/zhengce/zhengceku/2018-12/31/content_5448431.htm.
    [2]
    张胜,曹骞,康灿,等. 固体颗粒粒径对输送泵叶轮磨损特性的影响[J]. 矿冶工程,2021,41(4):19-23. DOI: 10.3969/j.issn.0253-6099.2021.04.005

    ZHANG Sheng,CAO Qian,KANG Can,et al. Influence of solid particle size on wear behavior of the impeller of delivery pump[J]. Mining and Metallurgical Engineering,2021,41(4):19-23. DOI: 10.3969/j.issn.0253-6099.2021.04.005
    [3]
    王勇,李刚祥,袁霄,等. 混合沙粒对半开式叶轮离心泵磨损的影响[J]. 排灌机械工程学报,2021,39(8):764-769.

    WANG Yong,LI Gangxiang,YUAN Xiao,et al. Influence of mixed sand on wear of centrifugal pump with semi-open impeller[J]. Journal of Drainage and Irrigation Machinery Engineering,2021,39(8):764-769.
    [4]
    赖芬,王凤鸣,朱相源,等. 基于E/CRC磨损模型的离心泵壁面磨损特性研究[J]. 哈尔滨工程大学学报,2021,42(5):719-728.

    LAI Fen,WANG Fengming,ZHU Xiangyuan,et al. Erosion characteristics of centrifugal pumps based on E/CRC erosion model[J]. Journal of Harbin Engineering University,2021,42(5):719-728.
    [5]
    郭文琪,田慕琴,宋建成,等. 基于多源信号融合的离心泵叶轮磨损故障分析[J]. 工矿自动化,2018,44(6):74-79. DOI: 10.13272/j.issn.1671-251x.2018020029

    GUO Wenqi,TIAN Muqin,SONG Jiancheng,et al. Wear fault analysis of centrifugal pump impeller based on multi-source signal fusion[J]. Industry and Mine Automation,2018,44(6):74-79. DOI: 10.13272/j.issn.1671-251x.2018020029
    [6]
    尹江南,袁寿其,骆寅,等. 离心泵叶轮不同磨损程度下的振动信号分析[J]. 排灌机械工程学报,2020,38(2):139-144.

    YIN Jiangnan,YUAN Shouqi,LUO Yin,et al. Analysis of vibration signal characteristics of centrifugal pump impeller under different wear degrees[J]. Journal of Drainage and Irrigation Machinery Engineering,2020,38(2):139-144.
    [7]
    BOHN B,KHOIE R,GOPALUNI R B,et al. Development and characterization of a non-intrusive sensor to measure wear in centrifugal pumps[J]. IEEE Sensors Journal,2019,19(18):7906-7914. DOI: 10.1109/JSEN.2019.2919283
    [8]
    段礼祥,张来斌,钱永梅. AHP−模糊综合评价法在离心泵安全评价中的应用[J]. 中国安全生产科学技术,2011,7(2):127-131.

    DUAN Lixiang,ZHANG Laibin,QIAN Yongmei. Application of fuzzy comprehensive evaluation in safety assessment of centrifuge pumps[J]. Journal of Safety Science and Technology,2011,7(2):127-131.
    [9]
    黄德才,李秉焱. AHP中群决策的几何平均超传递近似法[J]. 控制与决策,2012,27(5):797-800. DOI: 10.13195/j.cd.2012.05.160.huangdc.010

    HUANG Decai,LI Bingyan. Geometric mean and super-transitive approximate method of AHP group decision[J]. Control and Decision,2012,27(5):797-800. DOI: 10.13195/j.cd.2012.05.160.huangdc.010
    [10]
    付志扬,王涛,孔令号,等. 基于AHP−TOPSIS算法的重要电力客户用电状态评估[J]. 电网技术,2022,22(9):1554-1559. DOI: 10.13335/j.1000-3673.pst.2021.2280

    FU Zhiyang,WANG Tao,KONG Linghao,et al. Power consumption state evaluation of important power customers based on AHP-TOPSIS algorithm[J]. Power System Technology,2022,22(9):1554-1559. DOI: 10.13335/j.1000-3673.pst.2021.2280
    [11]
    GBT 25411—2010 IB型单级离心泵 [S].

    GBT 25411—2010 IB Single stage centrifugal pump [S].
    [12]
    郭文琪. 基于物联网的矿井主排水设备状态监测及寿命管理系统的开发[D]. 太原: 太原理工大学, 2018.

    GUO Wenqi. Development of IoT based monitoring and life management system for drainage equipment in mine[D]. Taiyuan: Taiyuan University of Technology, 2018.
    [13]
    王凯,刘厚林,袁寿其,等. 离心泵多工况水力性能优化设计方法[J]. 排灌机械工程学报,2012,30(1):20-24. DOI: 10.3969/j.issn.1674-8530.2012.01.005

    WANG Kai,LIU Houlin,YUAN Shouqi,et al. Optimization method for hydraulic performance of centrifugal pump at multi-operation points[J]. Journal of Drainage and Irrigation Machinery Engineering,2012,30(1):20-24. DOI: 10.3969/j.issn.1674-8530.2012.01.005
    [14]
    童水光,赵航,刘会琴,等. 中开多级离心泵效率优化计算方法[J]. 浙江大学学报(工学版),2019,53(5):988-996,1005.

    TONG Shuiguang,ZHAO Hang,LIU Huiqin,et al. Optimization calculation method for efficiency of multistage split case centrifugal pump[J]. Journal of Zhejiang University (Engineering Science),2019,53(5):988-996,1005.
    [15]
    关醒凡. 现代泵理论与设计[M]. 北京: 中国宇航出版社, 2011.

    GUAN Xingfan. Modern pump theory and design[M]. Beijing: China Aerospace Press, 2011.
  • Related Articles

    [1]TAN Gang, SONG Guodong, LIU Yu, ZHANG Guqiang, ZHAO Kaixuan. Coal mine fire risk assessment based on AHP-FCE[J]. Journal of Mine Automation, 2025, 51(7): 52-58. DOI: 10.13272/j.issn.1671-251x.2025040063
    [2]FENG Zhanke, QIAN Wang, PENG Jianchuan. Slope stability evaluation based on comprehensive weight and TOPSIS[J]. Journal of Mine Automation, 2023, 49(S1): 133-137.
    [3]TANG Lijun, WU Wei, LIU Shisen. Application of improved analytic hierarchy process in the emergency treatment mechanism of precise personnel positioning system[J]. Journal of Mine Automation, 2021, 47(10): 110-114. DOI: 10.13272/j.issn.1671-251x.2021030050
    [4]JIN Hongmei, DANG Qi, LI Hong'an, LI Zhanli. Dynamic evaluation of mine ventilation quality based on FCE-AHP[J]. Journal of Mine Automation, 2021, 47(9): 77-84.. DOI: 10.13272/j.issn.1671-251x.2021050061
    [5]YANG Li, DONG Yiping, LIU Chengcheng. Evaluation of coal mine emergency rescue capability based on analytic network process[J]. Journal of Mine Automation, 2015, 41(3): 114-118. DOI: 10.13272/j.issn.1671-251x.2015.03.030
    [6]DU Dawen, WANG Baomin, ZHANG Ji. Application of fuzzy comprehensive evaluation method in coal mine "six systems"[J]. Journal of Mine Automation, 2014, 40(4): 42-45. DOI: 10.13272/j.issn.1671-251x.2014.04.010
    [7]QIAN Xu, LIU Feng. Method of WIA-PA Health Evaluation Based on FAHP[J]. Journal of Mine Automation, 2011, 37(10): 63-66.
    [8]ZOU Yi-huai, JIANG Cheng-yu, LI Chun-hui, SU Heng-yu. Evaluation of Coal Mine Safety Production Based on AHP and Fuzzy Mathematics[J]. Journal of Mine Automation, 2010, 36(10): 39-41.
    [9]YUAN Mei, ZHANG Yi-ping, WANG Zuo-qiang. Safety Standardization Evaluation System of Tailing Reservoir Based on Analytical Hierarchy Process[J]. Journal of Mine Automation, 2010, 36(1): 52-55.
    [10]LI Jin-ming~, LI Run~, QI Shang-long~. Research of Security Assessment System of Coal Mine Based on AHP-FCE[J]. Journal of Mine Automation, 2009, 35(4): 61-64.
  • Cited by

    Periodical cited type(8)

    1. 王语嘉, 周宏宽, 贺怡伟, 马波. 基于贝叶斯网络和剩余寿命的船舶典型动力设备状态评估. 热能动力工程. 2025(06)
    2. 曹现刚,段雍,王国法,赵江滨,任怀伟,赵福媛,杨鑫,张鑫媛,樊红卫,薛旭升,李曼. 煤矿设备全寿命周期健康管理与智能维护研究综述. 煤炭学报. 2025(01): 694-714 .
    3. 江新星,吴杰,薛一冰,彭世亮. 基于SOM-BP级联神经网络的电驱离心泵健康状态识别方法. 油气储运. 2025(03): 350-359 .
    4. 林扬,杨哲,袁壮,苟成冬,李传坤,王春利. 基于改进TOPSIS的石化装置实时状态评估. 石油炼制与化工. 2024(03): 89-96 .
    5. 王志平. 泵站离心泵故障状态自动监测方法. 自动化应用. 2024(13): 191-193 .
    6. 王语嘉,李金波,侯继洁,马波. 基于T-S模糊故障树和剩余寿命的离心泵健康评估方法. 机电工程. 2024(12): 2272-2281 .
    7. 张阳,谢立华,段正强. 基于ASP模式的机械设备多特征参数健康状态综合评价. 机械设计与制造工程. 2023(08): 112-116 .
    8. 王沫涵,郭明. 基于模糊综合评价的生产安全事故应急预案评估方法研究. 内江科技. 2023(12): 58-60 .

    Other cited types(4)

Catalog

    Corresponding author: TIAN Muqin, tianmuqin@163.com

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (223) PDF downloads (32) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return