SUN Jiping, JIANG Ying. Research on key technologies of mine unmanned vehicle[J]. Journal of Mine Automation,2022,48(5):1-5, 31. DOI: 10.13272/j.issn.1671-251x.17947
Citation: SUN Jiping, JIANG Ying. Research on key technologies of mine unmanned vehicle[J]. Journal of Mine Automation,2022,48(5):1-5, 31. DOI: 10.13272/j.issn.1671-251x.17947

Research on key technologies of mine unmanned vehicle

More Information
  • Received Date: May 16, 2022
  • Revised Date: May 17, 2022
  • Available Online: May 18, 2022
  • Mine unmanned vehicles are needed to reduce the number of coal mine underground operating personnel and to build safe, efficient, green and intelligent mines. The characteristics of mine unmanned vehicles are summarized as following points. The positions of underground operating personnel in coal mine are comprehensively identified. All mine vehicles are controlled. Mine track transportation equipment only needs one-dimensional positioning. The lighting condition is poor. The wireless transmission attenuation is large. There is no satellite signal. The electromagnetic environment is complex. The characteristics also include electrical explosion-proof, humid environment and water spray and dust. This paper analyzes the technical characteristics of mine vehicle positioning, such as ultrasonic positioning, laser position, radio positioning(including RFID, ZigBee, UWB, WiFi6, 5G), inertial navigation, simultaneous localization and mapping(SLAM), odometer and so on. This study puts forward a joint positioning method of mine vehicle, which is based on UWB and supplemented by inertial navigation, odometer and SLAM. This paper analyzes the technical characteristics of obstacle identification and distance measurement of mine unmanned vehicle, such as laser radar, millimeter wave radar, infrared camera, visible light camera, visible light binocular vision camera and so on. This study puts forward a multi-information fusion method of obstacle identification and distance measurement of mine unmanned vehicle. The method is mainly based on laser radar, supplemented by millimeter wave radar, infrared camera, visible light camera, visible light binocular vision camera and ultrasonic radar. When the road condition is complex and the automatic driving can not make decisions, the mine unmanned vehicle needs to automatically switch to the ground remote control mode. In view of the above situation, it is pointed out that the mine unmanned vehicle ground remote control technology based on 5G is the preferred scheme. However, the mine 5G wireless communication system has the problems of small wireless coverage radius and high cost. Therefore, it is suggested to study the application of WiFi7 in the mine vehicle ground remote control.
  • [1]
    孙继平,钱晓红. 2004—2015年全国煤矿事故分析[J]. 工矿自动化,2016,42(11):1-5.

    SUN Jiping,QIAN Xiaohong. Analysis of coal mine accidents in China during 2004-2015[J]. Industry and Mine Automation,2016,42(11):1-5.
    [2]
    孙继平. 煤矿事故分析与煤矿大数据和物联网[J]. 工矿自动化,2015,41(3):1-5.

    SUN Jiping. Accident analysis and big data and Internet of things in coal mine[J]. Industry and Mine Automation,2015,41(3):1-5.
    [3]
    孙继平,钱晓红. 煤矿事故与应急救援技术装备[J]. 工矿自动化,2016,42(10):1-5.

    SUN Jiping,QIAN Xiaohong. Coal mine accident and emergency rescue technology and equipment[J]. Industry and Mine Automation,2016,42(10):1-5.
    [4]
    孙继平,钱晓红. 煤矿重特大事故应急救援技术及装备[J]. 煤炭科学技术,2017,45(1):112-116,153.

    SUN Jiping,QIAN Xiaohong. Emergency rescue technology and equipment of mine extraordinary accidents[J]. Coal Science and Technology,2017,45(1):112-116,153.
    [5]
    姜汉军. 矿井辅助运输设备[M]. 徐州: 中国矿业大学出版社, 2008.

    JIANG Hanjun. Mine auxiliary transport equipment[M]. Xuzhou: China University of Mining and Technology Press, 2008.
    [6]
    AQ 1048—2007 煤矿井下作业人员管理系统使用与管理规范[S].

    AQ 1048-2007 Specification for the usage and management of the system for the management of the underground personnel in a coal mine[S].
    [7]
    AQ 6210—2007 煤矿井下作业人员管理系统通用技术条件[S].

    AQ 6210-2007 General technical conditions of the system for the management of the underground personnel in a coal mine[S].
    [8]
    MT/T 1113—2011 煤矿轨道运输监控系统通用技术条件[S].

    MT/T 1113-2011 General specification of supervision system for rail transportation in a coal mine[S].
    [9]
    孙继平,李小伟,徐旭,等. 矿井电火花及热动力灾害紫外图像感知方法研究[J]. 工矿自动化,2022,48(4):1-4,95.

    SUN Jiping,LI Xiaowei,XU Xu,et al. Research on ultraviolet image perception method of mine electric spark and thermal power disaster[J]. Journal of Mine Automation,2022,48(4):1-4,95.
    [10]
    孙继平,陈晖升. 智慧矿山与5G和WiFi6[J]. 工矿自动化,2019,45(10):1-4.

    SUN Jiping,CHEN Huisheng. Smart mine with 5G and WiFi6[J]. Industry and Mine Automation,2019,45(10):1-4.
    [11]
    孙继平,张高敏. 矿用5G频段选择及天线优化设置研究[J]. 工矿自动化,2020,46(5):1-7.

    SUN Jiping,ZHANG Gaomi. Research on 5G frequency band selection and antenna optimization setting in coal mine[J]. Industry and Mine Automation,2020,46(5):1-7.
    [12]
    孙继平. 煤矿智能化与矿用5G[J]. 工矿自动化,2020,46(8):1-7.

    SUN Jiping. Coal mine intelligence and mine-used 5G[J]. Industry and Mine Automation,2020,46(8):1-7.
    [13]
    孙继平. 煤矿智能化与矿用5G和网络硬切片技术[J]. 工矿自动化,2021,47(8):1-6.

    SUN Jiping. Coal mine intelligence,mine 5G and network hard slicing technology[J]. Industry and Mine Automation,2021,47(8):1-6.
  • Related Articles

    [1]YU Yu. Research on 5G communication anti-interference technology and channel equalization algorithm for open-pit mines[J]. Journal of Mine Automation, 2024, 50(S2): 127-131.
    [2]ZHOU Yongli, ZHANG Pengjiao. Research on improving positioning accuracy of open pit mines under the background of 5G[J]. Journal of Mine Automation, 2024, 50(S2): 117-123.
    [3]ZHANG Liya, MA Zheng, HAO Bonan, LI Biao. Interference monitoring technology for mine-used 5G communication signal transmission[J]. Journal of Mine Automation, 2024, 50(11): 62-69. DOI: 10.13272/j.issn.1671-251x.204090054
    [4]SUN Jiping. Research and development of 5G communication system standards for coal mines[J]. Journal of Mine Automation, 2023, 49(8): 1-8. DOI: 10.13272/j.issn.1671-251x.18147
    [5]LI Chenxin. Research on mine 5G-advanced communication evolution technology[J]. Journal of Mine Automation, 2023, 49(3): 6-12. DOI: 10.13272/j.issn.1671-251x.2022090070
    [6]ZHANG Liya. Research on safety application technology of coal mine 5G communication system[J]. Journal of Mine Automation, 2021, 47(12): 8-12. DOI: 10.13272/j.issn.1671-251x.17854
    [7]GU Yidong, MENG Wei. Coal mine 5G wireless communication system construction concept[J]. Journal of Mine Automation, 2021, 47(10): 1-7. DOI: 10.13272/j.issn.1671-251x.17850
    [8]HUO Zhenlong, ZHANG Yuanhao. 5G communication technology and its application conception in coal mine[J]. Journal of Mine Automation, 2020, 46(3): 1-5. DOI: 10.13272/j.issn.1671-251x.17553
    [9]DU Anping. Application of LTE in mine wireless communication system[J]. Journal of Mine Automation, 2015, 41(7): 88-90. DOI: 10.13272/j.issn.1671-251x.2015.07.020
    [10]ZHU Xiao-dong, Peng Rui-yong. Application of Bluetooth technology in Wireless Communication for Traveling Crane[J]. Journal of Mine Automation, 2005, 31(4): 54-56.
  • Cited by

    Periodical cited type(35)

    1. 史义存, 习晓, 吴红兵, 王永亮, 姚胜卿. 基于5G技术的矿井无人驾驶车辆自动控制系统. 电子设计工程. 2025(15)
    2. 李星, 陈湘源, 张伟. 基于多传感器信息融合的无轨胶轮车井下高精度建图研究. 中国煤炭. 2025(06)
    3. 焦敬波,王震,赵春阳,刘盼,任月晓. 锚杆转载机组智能感知系统的研究与应用. 煤炭技术. 2025(01): 258-262 .
    4. 胡亮. 基于电力载波通信的精确定位读卡器设计. 化工自动化及仪表. 2025(02): 283-288 .
    5. 李伟,孟飞,王裕,魏洋,程海星,王乃棒. 井下无轨胶轮车多传感器数据融合智能辅助驾驶系统设计. 煤矿安全. 2025(04): 203-212 .
    6. 周鹏程. 煤矿井下无轨胶轮车安全控制装置设计. 机械工程与自动化. 2024(01): 163-164+167 .
    7. 韩阳. 基于UWB的矿用一体化智能车载终端的设计. 煤矿安全. 2024(02): 218-222 .
    8. 孙继平,彭铭. 煤矿信息综合承载网标准研究制定. 工矿自动化. 2024(04): 1-8 . 本站查看
    9. 徐中华,张鑫,付信凯,崔智翔,江松. SLAM技术在矿井智能化的研究现状与应用进展. 安徽工业大学学报(自然科学版). 2024(03): 294-304 .
    10. 张科学,张立亚,李晨鑫,魏春贤,高鹏. 基于5G的电液控设备邻架控制方法. 工矿自动化. 2024(S1): 165-168 . 本站查看
    11. 王维强,孟世华,严运兵. 基于激光点云的矿用无人运输车路径规划研究. 矿山机械. 2024(10): 10-15 .
    12. 孙继平,彭铭,刘斌. 矿井无线传输测试分析与矿用5G优选工作频段研究. 工矿自动化. 2024(10): 1-11+20 . 本站查看
    13. 张可,杨麓宁,费义涵,季欣然. 基于固态激光雷达的矿井专用AEB前端子系统设计. 电子设计工程. 2024(23): 98-104 .
    14. 张吉苗,宋仁忠,侯星野,佘长超,于晓波,马文平,梁皓月. 110 t氢能源矿用自卸车轴箱结构性能分析及优化. 工矿自动化. 2024(S2): 284-287 . 本站查看
    15. 杨坤. 矿井无轨胶轮车智能化管理系统研究. 工矿自动化. 2023(01): 162-170 . 本站查看
    16. 鞠晨. 矿井UWB定位系统中圆极化天线的优化设计和应用. 工矿自动化. 2023(01): 171-176 . 本站查看
    17. 孙继平,彭铭,潘涛,张高敏. 无线电波防爆安全阈值研究. 工矿自动化. 2023(02): 1-5 . 本站查看
    18. 任文清. 基于ADS和HFSS的矿井UWB射频前端电磁联合仿真方法. 工矿自动化. 2023(02): 85-93 . 本站查看
    19. 郑学召,严瑞锦,蔡国斌,王宝元,何芹健. 矿井动目标精确定位技术及优化方法研究. 工矿自动化. 2023(02): 14-22 . 本站查看
    20. 郭爱军. 基于UWB的PDOA与TOF煤矿井下联合定位方法. 工矿自动化. 2023(03): 137-141 . 本站查看
    21. 武徽. 铁路无人化装车动态跟踪关键技术研究. 矿山机械. 2023(04): 11-16 .
    22. 孙继平,梁伟锋,彭铭,张高敏,潘涛,张侯,李小伟. 煤矿井下无线传输衰减分析测试与最佳工作频段研究. 工矿自动化. 2023(04): 1-8 . 本站查看
    23. 吕瑞杰. 煤矿井下UWB信号路径损耗测量及中心频率选择. 工矿自动化. 2023(04): 147-152 . 本站查看
    24. 景宁波,马宪民,郭卫,秦学斌. 改进动态半径的矿井激光雷达点云滤波算法. 西安科技大学学报. 2023(02): 406-413 .
    25. 孙继平. 矿井人员位置监测技术. 工矿自动化. 2023(06): 41-47 . 本站查看
    26. 胡青松,孟春蕾,李世银,孙彦景. 矿井无人驾驶环境感知技术研究现状及展望. 工矿自动化. 2023(06): 128-140 . 本站查看
    27. 李宗伟. 基于非视距误差抑制的矿井轨道机车定位方法研究. 工矿自动化. 2023(07): 75-82 . 本站查看
    28. 孙继平. 煤矿用5G通信系统标准研究制定. 工矿自动化. 2023(08): 1-8 . 本站查看
    29. 刘仕杰,邹渊,张旭东. 基于局部几何-拓扑地图的地下矿自动驾驶定位导航方法. 工矿自动化. 2023(08): 70-80 . 本站查看
    30. 陈科,唐永岗,周李兵. 煤矿井下智能化辅助运输系统设计. 陕西煤炭. 2023(05): 82-85 .
    31. 李晨鑫. 基于5G的矿用装备远程控制技术研究. 工矿自动化. 2023(09): 90-97 . 本站查看
    32. 薛红,郭子文,邓平,马羚. 一种基于两级滤波的井下车辆组合定位方法. 信息技术与信息化. 2023(09): 158-161 .
    33. 汪雪君. 智能化矿用摄像仪测试方法中约束条件的研究. 中国测试. 2023(S1): 86-90 .
    34. 陈湘源,潘涛,周彬. 井工煤矿无轨胶轮车全局调度模型. 工矿自动化. 2023(12): 63-69 . 本站查看
    35. 邹筱瑜,黄鑫淼,王忠宾,房东圣,潘杰,司垒. 基于集成式因子图优化的煤矿巷道移动机器人三维地图构建. 工矿自动化. 2022(12): 57-67+92 . 本站查看

    Other cited types(7)

Catalog

    JIANG Ying

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (1866) PDF downloads (232) Cited by(42)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return