Citation: | HUO Yuehua, ZHAO Faqi, WU Wenhao. Multi-feature fusion based encrypted malicious traffic detection method for coal mine network[J]. Journal of Mine Automation,2022,48(7):142-148. DOI: 10.13272/j.issn.1671-251x.17944 |
[1] |
刘雨燕,宋燕. 新一代信息技术助力智慧矿山建设[J]. 煤炭技术,2021,40(2):184-186.
LIU Yuyan,SONG Yan. New-generation information technology helps construction of smart mines[J]. Coal Technology,2021,40(2):184-186.
|
[2] |
陈燕. 煤矿网络安全风险与防范标准研究[J]. 中国石油和化工标准与质量,2019,39(18):5-6. DOI: 10.3969/j.issn.1673-4076.2019.18.002
CHEN Yan. Study on safety risk and prevention standard of coal mine network[J]. China Petroleum and Chemical Standard and Quality,2019,39(18):5-6. DOI: 10.3969/j.issn.1673-4076.2019.18.002
|
[3] |
谭靓洁,李永飞,吴琼. 基于区块链的煤矿安监云数据安全访问模型研究[J]. 工矿自动化,2022,48(5):93-99. DOI: 10.13272/j.issn.1671-251x.2022030023
TAN Liangjie,LI Yongfei,WU Qiong. Research on security access model of coal mine safety supervision cloud data based on blockchain[J]. Journal of Mine Automation,2022,48(5):93-99. DOI: 10.13272/j.issn.1671-251x.2022030023
|
[4] |
SEAN G. Nearly half of malware now use TLS to conceal communications[EB/OL]. [2022-03-21]. https://news.sophos.com/en-us/2021/04/21/nearly-half-of-malware-now-use-tls-to-conceal-communications/.
|
[5] |
袁钦献. 加密网络流量分析关键技术研究与开发[D]. 西安: 西安电子科技大学, 2019.
YUAN Qinxian. Research and development of key technology for encrypted network traffic analysis[D]. Xi'an: Xidian University, 2019.
|
[6] |
ANDERSON B, MCGREW D. Identifying encrypted malware traffic with contextual flow data[C]//Proceedings of the 2016 ACM workshop on artificial intelligence and security, Vienna, 2016: 35-46.
|
[7] |
翟明芳,张兴明,赵博. 基于深度学习的加密恶意流量检测研究[J]. 网络与信息安全学报,2020,6(3):66-77.
ZHAI Mingfang,ZHANG Xingming,ZHAO Bo. Survey of encrypted malicious traffic detection based on deep learning[J]. Chinese Journal of Network and Information Security,2020,6(3):66-77.
|
[8] |
TORROLEDO I, CAMACHO L D, BAHNSEN A C. Hunting malicious TLS certificates with deep neural networks[C]//Proceedings of the 11th ACM Workshop on Artificial Intelligence and Security, Toronto, 2018: 64-73.
|
[9] |
YU Tangda, ZOU Futai, LI Linsen, et al. An encrypted malicious traffic detection system based on neural network[C]//2019 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery(CyberC), Guilin, 2019: 62-70.
|
[10] |
REZAEI S,LIU X. Deep learning for encrypted traffic classification:an overview[J]. IEEE Communications Magazine,2019,57(5):76-81. DOI: 10.1109/MCOM.2019.1800819
|
[11] |
ANDERSON B,PAUL S,MCGREW D. Deciphering malware's use of TLS (without decryption)[J]. Journal of Computer Virology and Hacking Techniques,2016,14(1):1-17.
|
[12] |
ANDERSON B, MCGREW D. Machine learning for encrypted malware traffic classification: accounting for noisy labels and non-ntationarity[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, 2017: 1723-1732.
|
[13] |
骆子铭,许书彬,刘晓东. 基于机器学习的TLS恶意加密流量检测方案[J]. 网络与信息安全学报,2020,6(1):77-83.
LUO Ziming,XU Shubin,LIU Xiaodong. Scheme for identifying malware traffic with TLS data based on machine learning[J]. Chinese Journal of Network and Information,2020,6(1):77-83.
|
[14] |
BARUT O, ZHU R, LUO Y, et al. TLS encrypted application classification using machine learning with flow feature engineering[C]//The 10th International Conference on Communication and Network Security, Tokyo, 2020: 32-41.
|
[15] |
鲁刚,郭荣华,周颖,等. 恶意流量特征提取综述[J]. 信息网络安全,2018(9):1-7.
LU Gang,GUO Ronghua,ZHOU Ying,et al. Review of malicious traffic feature extraction[J]. Netinfo Security,2018(9):1-7.
|
[16] |
康鹏, 杨文忠, 马红桥. TLS协议恶意加密流量识别研究综述[J/OL]. 计算机工程与应用: 1-21[2022-03-21]. http://kns.cnki.net/kcms/detail/11.2127.TP.20220308.0853.002.html.
KANG Peng, YANG Wenzhong, MA Hongqiao. TLS malicious encrypted traffic identification research [J/OL]. Computer Engineering and Applications: 1-21[2022-03-21]. http://kns.cnki.net/kcms/detail/11.2127.TP.20220308.0853.002.html.
|
[17] |
王洋,陈紫儿,柳瑞春,等. 基于决策树算法的网络加密流量识别方法[J]. 长江信息通信,2021,34(11):15-17. DOI: 10.3969/j.issn.1673-1131.2021.11.005
WANG Yang,CHEN Zi'er,LIU Ruichun,et al. Network encryption traffic identification method based on decision tree algorithm[J]. Changjiang Information & Communications,2021,34(11):15-17. DOI: 10.3969/j.issn.1673-1131.2021.11.005
|
[18] |
张心语,张秉晟,孟泉润,等. 隐私保护的加密流量检测研究[J]. 网络与信息安全学报,2021,7(4):101-113.
ZHANG Xinyu,ZHANG Bingsheng,MENG Quanrun,et al. Study on privacy preserving encrypted traffic detection[J]. Chinese Journal of Network and Information,2021,7(4):101-113.
|
[19] |
PEDREGOSA F,VAROQUAUX G,GRAMFORT A,et al. Scikit-learn:machine learning in Python[J]. Machine Learning,2011,12:2825-2830.
|
[20] |
GARCIA S,GRILL M,STIBOREK J,et al. An empirical comparison of botnet detection methods[J]. Computers & Security,2014,45:100-123.
|