XU Hui, LIU Lijing, SHEN Ke, ZOU Sheng. Longitudinal tear detection of belt conveyor based on multi linear lasers[J]. Journal of Mine Automation, 2021, 47(7): 37-44. DOI: 10.13272/j.issn.1671-251x.17681
Citation: XU Hui, LIU Lijing, SHEN Ke, ZOU Sheng. Longitudinal tear detection of belt conveyor based on multi linear lasers[J]. Journal of Mine Automation, 2021, 47(7): 37-44. DOI: 10.13272/j.issn.1671-251x.17681

Longitudinal tear detection of belt conveyor based on multi linear lasers

More Information
  • The underground coal mine environment is dim, humid and dusty, and the collected video images are blurred, which makes it difficult to identify the longitudinal tear of the conveyor belt. The existing research results only focus on whether there is longitudinal tear, without involving the location of tear damage and trend tracking. This paper proposes a method for longitudinal tearing detection of belt conveyors based on multi-channel linear laser. This method uses a mine intrinsically safe structured light emitter to project multiple linear lasers onto the surface of the conveyor belt, and uses a mine intrinsically safe industrial camera to take linear laser stripe images. By extracting the center line of the laser stripe and analyzing its characteristics, this method determines whether there is longitudinal tear damage in a single frame image. When there is damage, this method can search for damage boundary points and calculate damage width and depth characteristic values. The method fuses multi-frame image detection results and speed sensor values to calculate the complete longitudinal tear damage length, average width and average depth. By detecting the position of the marker on the conveyor belt, the method can locate the longitudinal position of the tear damage and locate the lateral position by finding the bit width ratio of the starting point of the damage on the conveyor belt. And the damage trend tracking is realized based on the longitudinal position. The method is tested by setting the conveyor belt longitudinal tear damage length to 0.73, 0.95 m, the average width to 0.01 m, the average depth to 0.008 m, and the sampling rate to 25 frames/s. The results show that the method can accurately detect whether the belt conveyor has longitudinal tears, the average error of damage length calculation is 0.06 m, the average error of damage average width and average depth calculation is 0.001 m, and the error of longitudinal positioning is less than 0.1 m. It can determine the development trend of longitudinal tears accurately.
  • Related Articles

    [1]JI Tianfu. Multi-source data fusion algorithm for coal mine based on fractional-order partial differentiation[J]. Journal of Mine Automation, 2024, 50(S2): 86-88.
    [2]SHANG Weidong, WANG Haili, ZHANG Xiaoxia, WANG Hao, XU Hualong. A coal mine data acquisition, fusion and sharing system based on object model[J]. Journal of Mine Automation, 2024, 50(1): 17-24, 34. DOI: 10.13272/j.issn.1671-251x.2023070047
    [3]ZHAO Xin, WANG Ranfeng, FU Xiang. Design of coal preparation data center platform based on Hadoop ecosystem[J]. Journal of Mine Automation, 2021, 47(12): 121-127. DOI: 10.13272/j.issn.1671-251x.2021040004
    [4]ZHANG Kun, LIAN Zisheng, XIE Jiacheng, LYU Kaibo, LIAO Yaoyao. Height measurement method of hydraulic support based on multi-sensor data fusio[J]. Journal of Mine Automation, 2017, 43(9): 65-69. DOI: 10.13272/j.issn.1671-251x.2017.09.012
    [5]GU Shanmao, HE Fengyou, LIU Yunlong. Integrated automation system of coal mine based on data fusion technology[J]. Journal of Mine Automation, 2015, 41(7): 1-4. DOI: 10.13272/j.issn.1671-251x.2015.07.001
    [6]LIU Kai, GUO Yongyi, WU Shiyue. Research of hierarchical multi-sensor data fusion model for coal mine safety monitoring[J]. Journal of Mine Automation, 2014, 40(6): 45-50. DOI: 10.13272/j.issn.1671-251x.2014.06.012
    [7]FAN Da-peng, WANG Xue-dan, LI Dan. Research of Data Fusion in CIMS Environment of Nantun Coal Preparation Plant[J]. Journal of Mine Automation, 2011, 37(9): 38-41.
    [8]MIAO Hong-xia, WANG Hong-hua. Research of Fault Diagnosis Method for High-voltage Circuit Breaker Based on Data Fusio[J]. Journal of Mine Automation, 2010, 36(10): 45-48.
    [9]HAN Bing, FU Hua. Gas Monitoring System Based on Data Fusion with BP Neural Network[J]. Journal of Mine Automation, 2008, 34(4): 10-13.
    [10]LIU Ying, TANG Dong-feng, HUANG Da. Design of Data Collection and Fussion System of Robot Based on ADμC812 and DSP[J]. Journal of Mine Automation, 2004, 30(1): 30-32.
  • Cited by

    Periodical cited type(9)

    1. 郭丽珍,周江东. 基于CNN网络的井下电缆局部放电实时诊断方法. 煤炭技术. 2023(09): 262-265 .
    2. 周鑫,李宝树,王涵. 基于大数据集成算法的多终端接入模式自动化识别模型. 计算技术与自动化. 2022(02): 34-39 .
    3. 雍明超,王磊,祁招,庞杰锋,姜睿智,孟乐,王胜辉,邵向阳. 干式变压器智能系统构建策略及关键技术研究. 电气应用. 2022(11): 6-15 .
    4. 于建军. 基于小波包-反向传播神经网络的局部放电信号模式识别方法. 微型电脑应用. 2021(03): 128-130 .
    5. 周立人,刘苹,孙孝娟,李卫和,石峰. 数字中心机房配电柜微环境监控系统的研究. 仪表技术与传感器. 2021(11): 63-67 .
    6. 李平,田秋松,霍明,陈熙伦,林雨,李佳伟. 基于小波变换和HOG特征的变压器局部放电类型识别方法. 电气传动. 2021(24): 52-56+62 .
    7. 王秋红. 电气设备产生局部放电现象及分析. 应用能源技术. 2020(11): 10-12 .
    8. 王李. 基于混合神经网络的矿用干式变压器故障诊断研究. 世界有色金属. 2019(14): 177-178 .
    9. 覃延佳,冯晓棕. 干式变压器局部放电在线监测中的应用分析. 电力设备管理. 2019(11): 35-37 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (221) PDF downloads (24) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return