WANG Yanping, FAN Jingdao, YAN Zhenguo, LI Chuan, CHANG Xintan, LI Xuewen. Analysis method of mine ventilation difficulty degree based on ventilation equivalent area[J]. Journal of Mine Automation, 2020, 46(6): 53-58. DOI: 10.13272/j.issn.1671-251x.17597
Citation: WANG Yanping, FAN Jingdao, YAN Zhenguo, LI Chuan, CHANG Xintan, LI Xuewen. Analysis method of mine ventilation difficulty degree based on ventilation equivalent area[J]. Journal of Mine Automation, 2020, 46(6): 53-58. DOI: 10.13272/j.issn.1671-251x.17597

Analysis method of mine ventilation difficulty degree based on ventilation equivalent area

More Information
  • In view of problems that equivalent orifice commonly used in current mine ventilation difficulty degree evaluation cannot effectively reflect details of ventilation difficulty degree, and ventilation resistance measurement cannot well measure effect of complex ventilation system in parallel, an refinement analysis method of mine ventilation difficulty degree based on ventilation equivalent area is proposed. According to obtained roadway ventilation information, the ventilation system network is solved to obtain wind pressure of each node in the system, and the ventilation system is segmented according to the wind pressure of each node. The roadways in each section are in parallel. According to characteristics of equivalent orifice, the equivalent orifice of each section are first calculated to obtain the equivalent area of each section comprehensively, so as to obtain corresponding ventilation equivalent area of each node. In order to visually and clearly express difficulty degree of ventilation in each section of the ventilation system, the ventilation equivalent area is represented graphically, including the wind pressure-equivalent area diagram, node-equivalent area diagram, wind pressure-equivalent energy consumption diagram and node-equivalent energy consumption diagram. According to the ventilation equivalent area diagrams, the mine ventilation difficulty degree is analyzed in detail including wind bottleneck, resistance distribution and ventilation energy consumption. The results of example validation show that the method can effectively distinguish resistance area and local resistance position and ventilation bottleneck location in the ventilation system, and it can be used for analysis and optimization of mine ventilation.
  • Related Articles

    [1]JIN Hongmei, DANG Qi, LI Hong'an, LI Zhanli. Dynamic evaluation of mine ventilation quality based on FCE-AHP[J]. Journal of Mine Automation, 2021, 47(9): 77-84.. DOI: 10.13272/j.issn.1671-251x.2021050061
    [2]ZHANG Ke, YANG Yingdi, LIU Xuetong, JIANG Chenglong. Construction and application of three-dimensional model of mine ventilation system[J]. Journal of Mine Automation, 2020, 46(2): 59-64. DOI: 10.13272/j.issn.1671-251x.2019070072
    [3]HE Min. Data processing method of coal mine ventilation resistance measurement based on relative pressure[J]. Journal of Mine Automation, 2019, 45(11): 1-4. DOI: 10.13272/j.issn.1671-251x.17446
    [4]CHENG Donghao, HUN Baoju, JIN Kai. Application prospect analysis of augmented reality technology in mine ventilation system[J]. Journal of Mine Automation, 2018, 44(8): 10-14. DOI: 10.13272/j.issn.1671-251x.2018010021
    [5]HE Min, WU Fusheng, . Simulation analysis of optimal regulation and control of ventilation system based on 3D model[J]. Journal of Mine Automation, 2016, 42(11): 41-44. DOI: 10.13272/j.issn.1671-251x.2016.11.010
    [6]XING Yanbing. Application of Ventsim 3D ventilation simulation system in Sitai Mine[J]. Journal of Mine Automation, 2015, 41(9): 90-92. DOI: 10.13272/j.issn.1671-251x.2015.09.024
    [7]ZHANG Congcong, WU Shiyue, AN Xingwei, XUE Liping, WU Qinglin. Reliability evaluation of mine ventilation system[J]. Journal of Mine Automation, 2015, 41(1): 114-118. DOI: 10.13272/j.issn.1671-251x.2015.01.029
    [8]CHENG Lei, LI Jianlei. Research of automatic drawing technique of mine ventilation network graph[J]. Journal of Mine Automation, 2014, 40(7): 36-40. DOI: 10.13272/j.issn.1671-251x.2014.07.011
    [9]MIAO Xiao-peng, SANG Zhen-hua. Application of fuzzy PID and Hopfield neural network in mine ventilation system[J]. Journal of Mine Automation, 2013, 39(8): 38-41. DOI: 10.7526/j.issn.1671-251X.2013.08.011
    [10]WANG Du-xia, ZHOU Fu-bao, CHENG Yuan-guo. Development of Drawing Program for Mine Ventilation System Pla[J]. Journal of Mine Automation, 2000, 26(2): 39-41.
  • Cited by

    Periodical cited type(8)

    1. 康永明. 矿井智能通风原理及关键技术探析. 内蒙古煤炭经济. 2023(13): 49-51 .
    2. 薛景辉. 煤矿双风机联合运转稳定性研究. 科技创新与应用. 2022(20): 106-109 .
    3. 付建兵. 煤矿通风系统通风难易程度评价及应用. 山西冶金. 2022(04): 122-123+171 .
    4. 魏连江,康家康,宋小林,周福宝,陈开岩. 矿井通风难易程度评价指标及分级方法. 中国矿业大学学报. 2021(04): 649-657 .
    5. 程晓之,王凯,郝海清,陈瑞鼎,吴建宾. 矿井局部通风智能调控系统及关键技术研究. 工矿自动化. 2021(09): 18-24 . 本站查看
    6. 王宝来,胡开庚,陈安国,韩国庆,袁志金. 基于多系统融合的反风演练指挥平台设计与应用. 工矿自动化. 2021(10): 103-109 . 本站查看
    7. 赵幸辉. 矿井通风风阻与风机工作效率研究. 机械管理开发. 2021(11): 81-83 .
    8. 刘柄良,袁帅. 矿井通风安全管理与防范措施. 内蒙古煤炭经济. 2020(16): 113-115 .

    Other cited types(3)

Catalog

    LI Xuewen

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (153) PDF downloads (19) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return