WANG Xinggang. Fault diagnosis of shearer rocker bearing based on improved EEMD and HMM[J]. Journal of Mine Automation, 2016, 42(9): 48-51. DOI: 10.13272/j.issn.167-251x.2016.09.011
Citation: WANG Xinggang. Fault diagnosis of shearer rocker bearing based on improved EEMD and HMM[J]. Journal of Mine Automation, 2016, 42(9): 48-51. DOI: 10.13272/j.issn.167-251x.2016.09.011

Fault diagnosis of shearer rocker bearing based on improved EEMD and HMM

More Information
  • The paper proposed a fault diagnosis method of shearer rocker bearing based on improved EEMD and HMM. The method uses improved extreme points symmetric extension and cosine window function to reduce impact of end effect on decomposition results, so as to improve signal decomposition precision; then extractes energy entropy of each intrinsic mode function as input feature vector of HMM for fault pattern recognition. The experimental results show that bearing fault identification rate of the proposed method is above 90%, which indicates the method achieves accurate fault diagnosis of shearer rocker bearing.
  • Related Articles

    [1]SUN Lei, SUN Shuxin, WANG Bowen, REN Hehe, PENG Hui. Research on network security service chain technology of data center in coal mine enterprise[J]. Journal of Mine Automation, 2022, 48(7): 149-154. DOI: 10.13272/j.issn.1671-251x.17926
    [2]WU Haotia. Discussion on network security protection of coal enterprises[J]. Journal of Mine Automation, 2021, 47(S2): 165-167.
    [3]WEI Wenhui, GUO Ye. Boundary effects optimization of ZigBee wireless location based on BP neural network[J]. Journal of Mine Automation, 2014, 40(11): 65-70. DOI: 10.13272/j.issn.1671-251x.2014.11.016
    [4]LIU Dong, WANG Xiang-ju, YU Jing-jing. Design of Wireless Network Interface of Mine-used Camera Based on AR2524 Chip[J]. Journal of Mine Automation, 2011, 37(8): 122-125.
    [5]LAI Cheng-yu, YIN Kai. Design of Networked Sensor System Interface Based on Internet[J]. Journal of Mine Automation, 2008, 34(4): 116-118.
    [6]YU Zhong-an, LI Hui-bi. Integrated Technology of Industrial Control Network and Information Network[J]. Journal of Mine Automation, 2008, 34(1): 76-79.
    [7]SU Bai-shun, LIU Jia-lei, LI Chang-qing. Implementation Scheme of Adapter of External Network Interface[J]. Journal of Mine Automation, 2007, 33(5): 120-122.
    [8]PU Xin-zheng, LI Li. Design of PCI Interface Card of LonWorks Control Networks[J]. Journal of Mine Automation, 2007, 33(2): 94-96.
    [9]PAN Yu. The Security Study of Coal Mine Information System Based on Computer Network[J]. Journal of Mine Automation, 2005, 31(4): 28-31.
    [10]GU Jun , CHEN Zhi-guo , QIAN Jian-sheng , ZHANG Hong , ZHU Yi-cun . Application of Computer Network in Coal Sale Management Business[J]. Journal of Mine Automation, 2001, 27(5): 29-30.
  • Cited by

    Periodical cited type(10)

    1. 何勇华. 综采工作面液压支架直线度控制技术研究. 煤矿机械. 2025(03): 37-41 .
    2. 朱仲飞. 虚拟现实技术在中职物理电学实验中的应用研究. 科教导刊. 2025(08): 10-12 .
    3. 程醉,熊崎秀,任倩. 产业工人职业技能培训中数字孪生的价值意蕴、应用路径与实践审思. 当代职业教育. 2025(03): 94-101 .
    4. 逯晓臻,李战华,邬鑫. 基于模糊自适应PID的煤矿井下刮板输送机直线度自动控制. 自动化应用. 2024(03): 83-85+88 .
    5. 陈湘源. 综采工作面轨迹测量与直线度控制方法. 矿业研究与开发. 2024(03): 185-191 .
    6. 任保将,郭李刚,王书,张凯,杜锋. 基于MapleSim-MATLAB双向耦合技术的液压支架孪生体构建. 煤炭技术. 2024(07): 244-247 .
    7. 廖志伟,高龙,曹军,李晓围. 基于深度学习的刮板输送机异物检测方法研究. 中国煤炭. 2024(08): 165-170 .
    8. 闫振国,王延平,王艳. 基于NOSA的煤矿企业井下微环境风险评估研究. 技术与创新管理. 2024(05): 545-552 .
    9. 王云飞,赵继云,张鹤,王浩,张阳. 基于神经网络补偿的液压支架群推移系统直线度控制方法. 煤炭科学技术. 2024(11): 174-185 .
    10. 方新秋,陈宁宁,冯豪天,宋扬,梁敏富,吴刚,张璠,李家璇,李猛,乔富康,吴洋. 刮板输送机直线度光纤精准感知与调直关键技术. 采矿与安全工程学报. 2023(05): 1043-1056 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (47) PDF downloads (7) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return