DONG Fangkai, ZHAO Meiqing, HUANG Weilong. Research on mine worker behavior detection in low-light underground coal mine environments[J]. Journal of Mine Automation,2025,51(1):21-30, 144. DOI: 10.13272/j.issn.1671-251x.2024090032
Citation: DONG Fangkai, ZHAO Meiqing, HUANG Weilong. Research on mine worker behavior detection in low-light underground coal mine environments[J]. Journal of Mine Automation,2025,51(1):21-30, 144. DOI: 10.13272/j.issn.1671-251x.2024090032

Research on mine worker behavior detection in low-light underground coal mine environments

More Information
  • Received Date: September 09, 2024
  • Revised Date: January 09, 2025
  • Available Online: December 05, 2024
  • The underground coal mine environment is complex, leading to missed and false detections when monitoring behaviors of mine workers under certain operational conditions. To address this issue, a method for detecting mine worker behaviors in low-light underground environments is proposed, which includes two parts: a low-light image enhancement and a behavior detection. The low-light image enhancement(SCI+) was improved based on self-calibrated illumination (SCI) learning, which consists ofan image enhancement network and a calibration network. The behavior detection improved the YOLOv8n model by incorporating the Dynamic Head detection, a cross-scale fusion module, and the Focal-EIoU loss function. Enhanced images from the SCI+ network were used as inputs to the behavior detection model to complete the tasks of mine worker behavior detection in low-light underground environments. Experimental results showed that: ① the method for mine worker behavior detection in low-light underground environments achieved an mAP@0.5 of 87.6%, representing an improvement of 2.5% over YOLOv8n, and improvements of 15.7%, 11.5%, 0.9%, and 4.3% compared to SSD, Faster RCNN, YOLOv5s, and RT-DETR-L, respectively. ② The method had a parameter count of 3.6×106, a computational complexity of 11.6×109, and a detection speed of 95.24 frames per second. ③ On the public EXDark dataset, the method achieved an mAP@0.5 of 74.7%, which was 1.5% higher than YOLOv8n, demonstrating strong generalization capability.

  • [1]
    付恩三,白润才,刘光伟,等. “十三五”期间我国煤矿事故特征及演变趋势分析[J]. 中国安全科学学报,2022,32(12):88-94.

    FU Ensan,BAI Runcai,LIU Guangwei,et al. Analysis on characteristics and evolution trend of coal mine accidents in our country during "13(th) five-year" plan period[J]. China Safety Science Journal,2022,32(12):88-94.
    [2]
    王宇,于春华,陈晓青,等. 基于多模态特征融合的井下人员不安全行为识别[J]. 工矿自动化,2023,49(11):138-144.

    WANG Yu,YU Chunhua,CHEN Xiaoqing,et al. Recognition of unsafe behaviors of underground personnel based on multi modal feature fusion[J]. Journal of Mine Automation,2023,49(11):138-144.
    [3]
    王国法,徐亚军,张金虎,等. 煤矿智能化开采新进展[J]. 煤炭科学技术,2021,49(1):1-10.

    WANG Guofa,XU Yajun,ZHANG Jinhu,et al. New development of intelligent mining in coal mines[J]. Coal Science and Technology,2021,49(1):1-10.
    [4]
    黄瀚,程小舟,云霄,等. 基于DA−GCN的煤矿人员行为识别方法[J]. 工矿自动化,2021,47(4):62-66.

    HUANG Han,CHENG Xiaozhou,YUN Xiao,et al. DA-GCN-based coal mine personnel action recognition method[J]. Industry and Mine Automation,2021,47(4):62-66.
    [5]
    刘浩,刘海滨,孙宇,等. 煤矿井下员工不安全行为智能识别系统[J]. 煤炭学报,2021,46(增刊2):1159-1169.

    LIU Hao,LIU Haibin,SUN Yu,et al. Intelligent recognition system of unsafe behavior of underground coal miners[J]. Journal of China Coal Society,2021,46(S2):1159-1169.
    [6]
    温廷新,王贵通,孔祥博,等. 基于迁移学习与残差网络的矿工不安全行为识别[J]. 中国安全科学学报,2020,30(3):41-46.

    WEN Tingxin,WANG Guitong,KONG Xiangbo,et al. Identification of miners' unsafe behaviors based on transfer learning and residual network[J]. China Safety Science Journal,2020,30(3):41-46.
    [7]
    李伟山,卫晨,王琳. 改进的Faster RCNN煤矿井下行人检测算法[J]. 计算机工程与应用,2019,55(4):200-207. DOI: 10.3778/j.issn.1002-8331.1711-0282

    LI Weishan,WEI Chen,WANG Lin. Improved Faster RCNN approach for pedestrian detection in underground coal mine[J]. Computer Engineering and Applications,2019,55(4):200-207. DOI: 10.3778/j.issn.1002-8331.1711-0282
    [8]
    延晓宇,董立红,厍向阳,等. 改进的FCOS煤矿井下行人检测算法[J]. 矿业研究与开发,2022,42(4):160-165.

    YAN Xiaoyu,DONG Lihong,SHE Xiangyang,et al. Improved FCOS pedestrian detection algorithm in underground coal mine[J]. Mining Research and Development,2022,42(4):160-165.
    [9]
    SHAO Xiaoqiang,LIU Shibo,LI Xin,et al. Rep-yolo:an efficient detection method for mine personnel[J]. Journal of Real-Time Image Processing,2024,21(2). DOI: 10.1007/S11554-023-01407-3.
    [10]
    XIN Fangfang,HE Xinyu,YAO Chaoxiu,et al. A real-time detection for miner behavior via DYS-YOLOv8n model[J]. Journal of Real-Time Image Processing,2024,21(3). DOI: 10.1007/S11554-024-01466-0.
    [11]
    WANG Zheng,LIU Yan,DUAN Siyuan,et al. An efficient detection of non-standard miner behavior using improved YOLOv8[J]. Computers and Electrical Engineering,2023,112. DOI: 10.1016/J.COMPELECENG.2023.109021.
    [12]
    孙亚琳,孙鹏翔,薛晔,等. 基于SCI−XDNet−CFF轻量化网络的井下运煤皮带异物识别[J]. 煤矿现代化,2025,34(1):40-46,51.

    SUN Yalin,SUN Pengxiang,XUE Ye,et al. Identification of foreign objects in underground coal transportation belt based on SCI-XDNet-CFF lightweight networks[J]. Coal Mine Modernization,2025,34(1):40-46,51.
    [13]
    REDMON J,DIVVALA S,GIRSHICK R,et al. You only look once:unified,real-time object detection[C]. IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas,2016. DOI: 10.1109/CVPR.2016.91.
    [14]
    GIRSHICK R. Fast R−CNN[C]. IEEE International Conference on Computer Vision,Santiago,2015. DOI: 10.1109/ICCV.2015.169.
    [15]
    HE K M,GKIOXARI G,DOLLAR P,et al. Mask R−CNN[C]. Proceedings of the IEEE International Conference on Computer Vision,Piscataway,2017:2980-2988.
    [16]
    WANG Ao,CHEN Hui,LIU Lihao,et al. Yolov10:Real-time end-to-end object detection[EB/OL]. arxiv preprint arxiv:2405.14458,2024. https://arxiv.org/abs/2405.14458v2.
    [17]
    VARGHESE R,SAMBATH M. YOLOv8:a novel object detection algorithm with enhanced performance and robustness[C]. International Conference on Advances in Data Engineering and Intelligent Computing Systems (ADICS),Chennai,2024. DOI: 10.1109/ADICS58448.2024.10533619.
    [18]
    DAI Xiyang,CHEN Yinpeng,XIAO Bin,et al. Dynamic head:unifying object detection heads with attentions[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Nashville,2021:7373-7382.
    [19]
    赵小虎,张狄,谢礼逊,等. 基于改进YOLOv8的煤矿皮带异物检测方法[J/OL]. 工程科学与技术,2025:1-16,[2024-08-14]. https://kns.cnki.net/kcms/detail/51.1773.tb.20250114.1313.001.html.

    ZHAO Xiaohu,ZHANG Di,XIE Lixun,et al. Detection method of foreign body in coal mine belt based on improved YOLOv8[J/OL]. Advanced Engineering Sciences,2025:1-16,[2024-08-14]. https://kns.cnki.net/kcms/detail/51.1773.tb.20250114.1313.001.html.
    [20]
    NING Shiyong,HAN Xu. An improved YOLOv8-based safety helmet wearing detection algorithm[C]. 7th International Conference on Computer Information Science and Application Technology ,Hangzhou,2024:75-79.
    [21]
    ZHENG Zhaohui,WANG Ping,REN Dongwei,et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE Transactions on Cybernetics,2021,52(8):8574-8586.
    [22]
    ZHANG Yifan,REN Weiqiang,ZHANG Zhang,et al. Focal and efficient IoU loss for accurate bounding box regression[J]. Neurocomputing,2022,506:146-157. DOI: 10.1016/j.neucom.2022.07.042
    [23]
    GUO Xiaojie,LI Yu,LING Haibin. LIME:low-light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing,2016,26(2):982-993.
    [24]
    田子建,阳康,吴佳奇,等. 基于LMIENet图像增强的矿井下低光环境目标检测方法[J]. 煤炭科学技术,2024,52(5):222-235. DOI: 10.12438/cst.2023-0675

    TIAN Zijian,YANG Kang,WU Jiaqi,et al. LMIENet enhanced object detection method for low light environment in underground mines[J]. Coal Science and Technology,2024,52(5):222-235. DOI: 10.12438/cst.2023-0675
    [25]
    WEI Chen,WANG Wenjing,YANG Wenhan,et al. Deep retinex decomposition for low-light enhancement[EB/OL]. [2024-08-14]. https://arxiv.org/abs/1808.04560v1.
    [26]
    LI Chongyi,GUO Chunle,CHEN C L. Learning to enhance low-light image via zero-reference deep curve estimation[J]. IEEE Transactions on Software Engineering,2021. DOI: 10.1109/TPAMI.2021.3063604.
    [27]
    LIU Wei,ANGUELOV D,ERHAN D,et al. SSD:single shot multibox detector[J]. CoRR,2015. DOI: 10.1007/978-3-319-46448-0_2.
    [28]
    CHEN Xinlei,GUPTA A. An implementation of faster rcnn with study for region sampling[EB/OL]. [2024-08-06]. https://arxiv.org/abs/1702.02138v1.
    [29]
    YANG Guanhao,FENG Wei,JIN Jintao,et al.Face mask recognition system with YOLOV5 based on image recognition[C].IEEE 6th International Conference on Computer and Communications ,Chengdu,2020:1398-1404.
    [30]
    ZHAO Yian,LYU Wenyu,XU Shangliang,et al. DETRs beat YOLOs on real-time object detection[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle,2024:16965-16974.
    [31]
    寇发荣,肖伟,何海洋,等. 基于改进YOLOv5的煤矿井下目标检测研究[J]. 电子与信息学报,2023,45(7):2642-2649. DOI: 10.11999/JEIT220725

    KOU Farong,XIAO Wei,HE Haiyang,et al. Research on target detection in underground coal mines based on improved YOLOv5[J]. Journal of Electronics & Information Technology,2023,45(7):2642-2649. DOI: 10.11999/JEIT220725
    [32]
    陈伟,江志成,田子建,等. 基于YOLOv8的煤矿井下人员不安全动作检测算法[J/OL]. 煤炭科学技术:1-19[2024-08-02]. http://kns.cnki.net/kcms/detail/11.2402.td.20240322.1343.003.html.

    CHEN Wei,JIANG Zhicheng,TIAN Zijian,et al. Unsafe action detection algorithm of underground personnel in coal mine based on YOLOv8[J/OL]. Coal Science and Technology:1-19[2024-08-02]. http://kns.cnki.net/kcms/detail/11.2402.td.20240322.1343.003.html.
  • Related Articles

    [1]CHU Fei, YAN Chenghao, ZHANG Qi, ZHANG Yong, LI Huijun. An improved YOLOv8n-based object detection algorithm for constrained scenarios in underground coal mines[J]. Journal of Mine Automation, 2025, 51(8): 43-50. DOI: 10.13272/j.issn.1671-251x.2025050073
    [2]MAO Qinghua, YANG Fan, WANG Chao, TONG Xuyao, TONG Junwei, ZHANG Xuhui, XUE Xusheng. Mine hoisting steel wire rope surface damage image recognition based on improved YOLOv8n[J]. Journal of Mine Automation, 2025, 51(4): 100-106, 152. DOI: 10.13272/j.issn.1671-251x.2024120025
    [3]XU Jinhui, WANG Wenshan, WANG Shuang, WANG Wenyue, ZHAO Tingting. Multi-object detection for underground unmanned locomotives based on DYCS-YOLOv8n[J]. Journal of Mine Automation, 2025, 51(4): 86-92, 130. DOI: 10.13272/j.issn.1671-251x.2024100036
    [4]WEN Yongzhong, JIA Pengtao, XIA Mingao, ZHANG Longgang, WANG Weifeng. Multi-target detection of underground personnel based on an improved YOLOv8n model[J]. Journal of Mine Automation, 2025, 51(1): 31-37, 77. DOI: 10.13272/j.issn.1671-251x.2024110035
    [5]Foreign Object Detection Method for Underground Mine Conveyor Belts Based on Extremely Lightweight YOLOv8n[J]. Journal of Mine Automation.
    [6]WANG Qi, XIA Lufei, CHEN Tianming, HAN Hongyin, WANG Liang. Detection of underground personnel safety helmet wearing based on improved YOLOv8n[J]. Journal of Mine Automation, 2024, 50(9): 124-129. DOI: 10.13272/j.issn.1671-251x.2024040054
    [7]JIANG Yuanyuan, LIU Songbo. A coal mine underground drill pipes counting method based on improved YOLOv8n[J]. Journal of Mine Automation, 2024, 50(8): 112-119. DOI: 10.13272/j.issn.1671-251x.2024040073
    [8]XUE Xiaoyong, HE Xinyu, YAO Chaoxiu, JIANG Ze, PAN Hongguang. Small object detection method for mining face based on improved YOLOv8n[J]. Journal of Mine Automation, 2024, 50(8): 105-111. DOI: 10.13272/j.issn.1671-251x.2024060013
    [9]CHEN Tengjie, LI Yong'an, ZHANG Zhihao, LIN Bin. Foreign object detection and counting method for belt conveyor based on improved YOLOv8n+DeepSORT[J]. Journal of Mine Automation, 2024, 50(8): 91-98. DOI: 10.13272/j.issn.1671-251x.2024070043
    [10]TENG Wenxiang, WANG Cheng, FEI Shuhui. Research on coal gangue recognition algorithm based on HGTC-YOLOv8n model[J]. Journal of Mine Automation, 2024, 50(5): 52-59. DOI: 10.13272/j.issn.1671-251x.2024030064
  • Cited by

    Periodical cited type(1)

    1. 张旭辉, 余恒翰, 杜昱阳, 杨文娟, 赵亦辉, 万继成, 王彦群, 赵典, 汤杜炜. 煤矿井下人员危险行为检测方法. 工矿自动化. 2025(05) 本站查看

    Other cited types(2)

Catalog

    HUANG Weilong

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (88) PDF downloads (18) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return