CHENG Gang, CHEN Jie, PAN Zeye, et al. Coal gangue recognition method based on water heat transfer and infrared thermal imaging[J]. Journal of Mine Automation,2024,50(1):66-71, 137. DOI: 10.13272/j.issn.1671-251x.2023050056
Citation: CHENG Gang, CHEN Jie, PAN Zeye, et al. Coal gangue recognition method based on water heat transfer and infrared thermal imaging[J]. Journal of Mine Automation,2024,50(1):66-71, 137. DOI: 10.13272/j.issn.1671-251x.2023050056

Coal gangue recognition method based on water heat transfer and infrared thermal imaging

More Information
  • Received Date: May 16, 2023
  • Revised Date: January 17, 2024
  • Available Online: January 30, 2024
  • The coal gangue recognition method based on visible light images has low accuracy and slow recognition speed. The coal gangue recognition method based on high-energy ray transmission has significant radiation, resulting in limited application. The infrared thermal imaging has advantages such as strong penetration and no influence from light. But the surface temperature of coal and gangue is relatively close at room temperature, resulting in no significant difference between coal and gangue in infrared thermal images, making it difficult to achieve good recognition results. In order to solve the above problems, a coal gangue recognition method based on water heat transfer and infrared thermal imaging is proposed. The method conducts infrared thermal imaging experiments on coal and gangue under different water temperatures (18, 21, 24, 27, 30 ℃). The method distinguishes between coal and gangue based on the differences in infrared thermal images and temperature changes. The experimental results show that the infrared thermal images of coal and gangue are different at different water temperatures. When the water temperature is lower than the ambient temperature, there is a significant difference between the infrared thermal images of coal and gangue. Under the same water temperature conditions, the difference between the infrared thermal images of coal and gangue gradually increases with time. The surface temperature changes of coal and gangue both show an increasing trend with the increase of water temperature and time. But the surface temperature changes of gangue are greater than those of coal. When the water temperature is 18℃ and the time is 180 s, the difference and temperature difference between the infrared thermal images of coal and gangue reach their maximum. This indicates that low-temperature water can serve as a heat transfer medium, which is more conducive to creating a large temperature difference between coal and gangue. The accurate and rapid recognition of coal and gangue infrared thermal images can be achieved.
  • [1]
    袁亮. 我国煤炭主体能源安全高质量发展的理论技术思考[J]. 中国科学院院刊,2023,38(1):11-22.

    YUAN Liang. Theory and technology considerations on high-quality development of coal main energy security in China[J]. Bulletin of Chinese Academy of Sciences,2023,38(1):11-22.
    [2]
    王国法,富佳兴,孟令宇. 煤矿智能化创新团队建设与关键技术研发进展[J]. 工矿自动化,2022,48(12):1-15.

    WANG Guofa,FU Jiaxing,MENG Lingyu. Development of innovation team construction and key technology research in coal mine intelligence[J]. Journal of Mine Automation,2022,48(12):1-15.
    [3]
    袁亮,张通,张庆贺,等. 双碳目标下废弃矿井绿色低碳多能互补体系建设思考[J]. 煤炭学报,2022,47(6):2131-2139.

    YUAN Liang,ZHANG Tong,ZHANG Qinghe,et al. Construction of green,low-carbon and multi-energy complementary system for abandoned mines under global carbon neutrality[J]. Journal of China Coal Society,2022,47(6):2131-2139.
    [4]
    YANG Mei,GUO Zhixing,DENG Yinsheng,et al. Preparation of CaO-Al2O3-SiO2 glass ceramics from coal gangue[J]. International Journal of Mineral Processing,2012,102:112-115.
    [5]
    XUE Bo,ZHANG Yong,LI Jian,et al. A review of coal gangue identification research-application to China's top coal release process[J]. Environmental Science and Pollution Research,2023,30(6):14091-14103.
    [6]
    LI Deyong,WANG Guofa,ZHANG Yong,et al. Coal gangue detection and recognition algorithm based on deformable convolution YOLOv3[J]. IET Image Processing,2022,16(1):134-144. DOI: 10.1049/ipr2.12339
    [7]
    王家臣,李良晖,杨胜利. 不同照度下煤矸图像灰度及纹理特征提取的实验研究[J]. 煤炭学报,2018,43(11):3051-3061.

    WANG Jiachen,LI Lianghui,YANG Shengli. Experimental study on gray and texture features extraction of coal and gangue image under different illuminance[J]. Journal of China Coal Society,2018,43(11):3051-3061.
    [8]
    薛光辉,李秀莹,钱孝玲,等. 基于随机森林的综放工作面煤矸图像识别[J]. 工矿自动化,2020,46(5):57-62.

    XUE Guanghui,LI Xiuying,QIAN Xiaoling,et al. Coal-gangue image recognition in fully-mechanized caving face based on random forest[J]. Industry and Mine Automation,2020,46(5):57-62.
    [9]
    杨慧刚,乔志敏. 基于X射线和机器视觉的煤与矸石分选系统设计[J]. 工矿自动化,2017,43(3):85-89.

    YANG Huigang,QIAO Zhimin. Design of separation system of coal and gangue based on X-ray and machine vision[J]. Industry and Mine Automation,2017,43(3):85-89.
    [10]
    李曼,段雍,曹现刚,等. 煤矸分选机器人图像识别方法和系统[J]. 煤炭学报,2020,45(10):3636-3644.

    LI Man,DUAN Yong,CAO Xiangang,et al. Image identification method and system for coal and gangue sorting robot[J]. Journal of China Coal Society,2020,45(10):3636-3644.
    [11]
    张释如,黄综浏,张袁浩,等. 基于改进YOLOv5的煤矸识别研究[J]. 工矿自动化,2022,48(11):39-44.

    ZHANG Shiru,HUANG Zongliu,ZHANG Yuanhao,et al. Coal and gangue recognition research based on improved YOLOv5[J]. Journal of Mine Automation,2022,48(11):39-44.
    [12]
    郭永存,何磊,刘普壮,等. 煤矸双能X射线图像多维度分析识别方法[J]. 煤炭学报,2021,46(1):300-309.

    GUO Yongcun,HE Lei,LIU Puzhuang,et al. Multi-dimensional analysis and recognition method of coal and gangue dual-energy X-ray images[J]. Journal of China Coal Society,2021,46(1):300-309.
    [13]
    王淑,冷航,陈彦伶,等. 红外热成像技术在孔隙尺度下多孔介质相变过程表征中的应用与优化研究[J]. 红外技术,2022,44(3):294-302. DOI: 10.11846/j.issn.1001-8891.2022.3.hwjs202203013

    WANG Shu,LENG Hang,CHEN Yanling,et al. Application of infrared thermography for characterizing phase change process of porous media at pore scale[J]. Infrared Technology,2022,44(3):294-302. DOI: 10.11846/j.issn.1001-8891.2022.3.hwjs202203013
    [14]
    QU Zhi,JIANG Peng,ZHANG Weixu. Development and application of infrared thermography non-destructive testing techniques[J]. Sensors,2020,20(14):3851-3876. DOI: 10.3390/s20143851
    [15]
    PAN Dong,JIANG Zhaohui,CHEN Zhipeng,et al. Compensation method for molten iron temperature measurement based on heterogeneous features of infrared thermal images[J]. IEEE Transactions on Industrial Informatics,2020,16(11):7056-7066. DOI: 10.1109/TII.2020.2972332
    [16]
    卜迟武,刘涛,李锐,等. 光伏电池缺陷红外热成像检测与图像序列处理[J]. 光学学报,2022,42(7):118-124.

    BU Chiwu,LIU Tao,LI Rui,et al. Infrared thermography detection and images sequence processing for defects in photovoltaic cells[J]. Acta Optica Sinica,2022,42(7):118-124.
    [17]
    程继杰,刘毅,李小伟. 基于热红外图像的煤矿冲击地压和煤与瓦斯突出感知报警方法[J]. 煤炭学报,2023,48(5):2236-2248.

    CHENG Jijie,LIU Yi,LI Xiaowei. Coal mine rock burst and coal and gas outburst perception alarm method based on thermal infrared image[J]. Journal of China Coal Society,2023,48(5):2236-2248.
    [18]
    赵小虎,车亭雨,叶圣,等. 煤体红外热像异常区域分割方法[J]. 工矿自动化,2022,48(9):92-99.

    ZHAO Xiaohu,CHE Tingyu,YE Sheng,et al. Segmentation method of the abnormal area of coal infrared thermal image[J]. Journal of Mine Automation,2022,48(9):92-99.
    [19]
    张志强,王萍,于旭东,等. 高精度红外热成像测温技术研究[J]. 仪器仪表学报,2020,41(5):10-18.

    ZHANG Zhiqiang,WANG Ping,YU Xudong,et al. Study on high accuracy temperature measurement technology of infrared thermal imager[J]. Chinese Journal of Scientific Instrument,2020,41(5):10-18.
    [20]
    孙继平,李迎春. 矿井大气中红外辐射传输特性[J]. 煤炭学报,2005,30(6):788-791. DOI: 10.3321/j.issn:0253-9993.2005.06.024

    SUN Jiping,LI Yingchun. Transmission characteristic of infrared radiation through mine atmosphere[J]. Journal of China Coal Society,2005,30(6):788-791. DOI: 10.3321/j.issn:0253-9993.2005.06.024
    [21]
    国家安全生产监督管理总局. 煤矿安全规程[M]. 北京:煤炭工业出版社,2022.

    State Administration of Work Safety. Coal mine safety regulations[M]. Beijing:Coal Industry Press,2022.
  • Related Articles

    [1]LIU Zhixiang, SUN Zhan, YIN Jiakuo, ZOU Kang. Experimental study on coal rock recognition based on infrared thermal imaging and vibration signals[J]. Journal of Mine Automation, 2024, 50(4): 78-83, 152. DOI: 10.13272/j.issn.1671-251x.2023110029
    [2]CHENG Gang, PAN Zeye, WEI Yifan, CHEN Jie. Research on coal gangue recognition method based on infrared thermal imaging[J]. Journal of Mine Automation, 2024, 50(4): 69-77. DOI: 10.13272/j.issn.1671-251x.2023100086
    [3]GUO Yanqiu, MIAO Changyun, LIU Yi. Research on fault detection of belt conveyor roller based on thermal infrared image[J]. Journal of Mine Automation, 2023, 49(10): 52-60. DOI: 10.13272/j.issn.1671-251x.2022120051
    [4]ZHAO Xiaohu, CHE Tingyu, YE Sheng, TIAN He, ZHANG KAI. Segmentation method of the abnormal area of coal infrared thermal image[J]. Journal of Mine Automation, 2022, 48(9): 92-99. DOI: 10.13272/j.issn.1671-251x.2022030086
    [5]LIU Zejian, XU Yongliang, LYU Zhiguang, WU Jindong, LI Minjie. Temperature rise characteristics of spontaneous combustion and oxidation ofcoal with different particle sizes under the effect of thermal-stress coupling[J]. Journal of Mine Automation, 2021, 47(9): 91-95.. DOI: 10.13272/j.issn.1671-251x.17805
    [6]ZHENG Xuezhao, XU Chengyu, WANG Baoyuan, YANG Wei, CHEN Yineng, ZHANG Duo. Research on the variation law of coal electrical parameters under different temperatures and detection frequencies[J]. Journal of Mine Automation, 2021, 47(3): 27-33. DOI: 10.13272/j.issn.1671-251x.17689
    [7]LIU Tianqi. Research on the minimum ignition temperature variation law of coal dust cloud with different coal quality[J]. Journal of Mine Automation, 2019, 45(9): 80-85. DOI: 10.13272/j.issn.1671-251x.2018120078
    [8]LOU Quan, LI Zhonghui, LI Aiguo, ZHANG Songshan, WANG Yabo. Research of infrared radiation characteristics of concrete deformation and failure[J]. Journal of Mine Automation, 2015, 41(7): 44-48. DOI: 10.13272/j.issn.1671-251x.2015.07.011
    [9]LI Zhan-sheng, LI Zhi, QIN Ling. Design of Monitoring System of Water Temperature of Mine Boiler Based on SPCE061A[J]. Journal of Mine Automation, 2010, 36(9): 117-119.
    [10]XUE Guo-xin, XIAO Li-chua. Calculation of the Temperature Difference Between the Top and Bottom of Vapor-bag of Coal-boiler[J]. Journal of Mine Automation, 2002, 28(6): 24-25.
  • Cited by

    Periodical cited type(6)

    1. 王瑞,宋琦,刘文慧,摆玉龙. 基于变分模态分解和改进频率增强分解变压器的有色金属价格预测. 西北师范大学学报(自然科学版). 2025(01): 51-60 .
    2. 肖国亮,杨博,牛勇. 基于Stacking集成模型的顺层钻孔预抽煤层瓦斯涌出量预测. 煤矿现代化. 2025(04): 153-156 .
    3. 梁旭,王玲,赵书涵. 基于残差神经网络的鸡蛋分类识别研究. 河南农业大学学报. 2024(03): 456-466 .
    4. 李常青. 基于矿山物联网的瓦斯涌出预测模型分析. 自动化应用. 2024(14): 277-279 .
    5. 宋世伟,张雪,张喜超,景媛媛. 基于深度神经网络的回采工作面瓦斯涌出量预测. 现代工业经济和信息化. 2024(09): 115-116+119 .
    6. 刘超,侯人杰. 基于自编码器与时域卷积神经网络算法的配电网线损分析. 软件导刊. 2024(09): 63-69 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (344) PDF downloads (84) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return