Citation: | RAO Tianrong, PAN Tao, XU Huijun. Unsafe action recognition in underground coal mine based on cross-attention mechanism[J]. Journal of Mine Automation,2022,48(10):48-54. DOI: 10.13272/j.issn.1671-251x.17949 |
[1] |
党伟超,史云龙,白尚旺,等. 基于条件变分自编码器的井下配电室巡检行为检测[J]. 工矿自动化,2021,47(12):98-105. DOI: 10.13272/j.issn.1671-251x.2021030087
DANG Weichao,SHI Yunlong,BAI Shangwang,et al. Inspection behavior detection of underground power distribution room based on conditional variational auto-encoder[J]. Industry and Mine Automation,2021,47(12):98-105. DOI: 10.13272/j.issn.1671-251x.2021030087
|
[2] |
王国法,任怀伟,赵国瑞,等. 煤矿智能化十大“痛点”解析及对策[J]. 工矿自动化,2021,47(6):1-11. DOI: 10.13272/j.issn.1671-251x.17808
WANG Guofa,REN Huaiwei,ZHAO Guorui,et al. Analysis and countermeasures of ten 'pain points' of intelligent coal mine[J]. Industry and Mine Automation,2021,47(6):1-11. DOI: 10.13272/j.issn.1671-251x.17808
|
[3] |
SIMONYAN K, ZISSERMAN A. Two-streamconvolutional networks for action recognition in videos[Z]. arXiv Preprint, arXiv:1406.2199v2.
|
[4] |
WANG Limin, XIONG Yuanjun, WANG Zhe, et al. Temporal segment networks: towards good practices for deep action recognition[C]. European Conference on Computer Vision, Amsterdam, 2016: 20-36.
|
[5] |
JI Lin, GAN Chuang, HAN Song. TSM: temporal shift module for efficient video understanding[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, 2019: 7083-7093.
|
[6] |
LIU Kun, LIU Wu, GAN Chuang, et al. T-C3D: temporal convolutional 3D network for real-time action recognition[C]. The AAAI Conference on Artificial Intelligence, New Orleans, 2018: 7138-7145.
|
[7] |
FEICHTENHOFER C, FAN H, MALIK J, et al. Slowfast networks for video recognition[C]. The IEEE International Conference on Computer Vision, Long Beach, 2019: 6202-6211.
|
[8] |
党伟超,张泽杰,白尚旺,等. 基于改进双流法的井下配电室巡检行为识别[J]. 工矿自动化,2020,46(4):75-80. DOI: 10.13272/j.issn.1671-251x.2019080074
DANG Weichao,ZHANG Zejie,BAI Shangwang,et al. Inspection behavior recognition of underground power distribution room based on improved two-stream CNN method[J]. Industry and Mine Automation,2020,46(4):75-80. DOI: 10.13272/j.issn.1671-251x.2019080074
|
[9] |
刘浩,刘海滨,孙宇,等. 煤矿井下员工不安全行为智能识别系统[J]. 煤炭学报,2021,46(增刊2):1159-1169. DOI: 10.13225/j.cnki.jccs.2021.0670
LIU Hao,LIU Haibin,SUN Yu,et al. Intelligent recognition system of unsafe behavior of underground coal miners[J]. Journal of China Coal Society,2021,46(S2):1159-1169. DOI: 10.13225/j.cnki.jccs.2021.0670
|
[10] |
张立亚. 基于图像识别的煤矿井下安全管控技术[J]. 煤矿安全,2021,52(2):165-168. DOI: 10.13347/j.cnki.mkaq.2021.02.032
ZHANG Liya. Safety control technology of coal mine based on image recognition[J]. Safety in Coal Mines,2021,52(2):165-168. DOI: 10.13347/j.cnki.mkaq.2021.02.032
|
[11] |
YAN Sijie, XIONG Yuanjun, LIN Dahua. Spatial temporal graph convolutional networks for skeleton-based action recognition[C]. The AAAI Conference on Artificial Intelligence, New Orleans, 2018: 7444-7452.
|
[12] |
SHI Lei, ZHANG Yifan, CHENG Jian, et al. Two-stream adaptive graph convolutional networks for skeleton-based action recognition[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, 2019: 12026-12035.
|
[13] |
黄瀚,程小舟,云霄,等. 基于DA−GCN的煤矿人员行为识别方法[J]. 工矿自动化,2021,47(4):62-66. DOI: 10.13272/j.issn.1671-251x.17721
HUANG Han,CHENG Xiaozhou,YUN Xiao,et al. DA-GCN-based coal mine personnel action recognition method[J]. Industry and Mine Automation,2021,47(4):62-66. DOI: 10.13272/j.issn.1671-251x.17721
|
[14] |
王璇,吴佳奇,阳康,等. 煤矿井下人体姿态检测方法[J]. 工矿自动化,2022,48(5):79-84. DOI: 10.13272/j.issn.1671-251x.17867
WANG Xuan,WU Jiaqi,YANG Kang,et al. Human posture detection method in coal mine[J]. Journal of Mine Automation,2022,48(5):79-84. DOI: 10.13272/j.issn.1671-251x.17867
|
[15] |
HARA K, KATAOKA H, SATOH Y. Can spatiotemporal 3D CNNs retrace the history of 2D CNNs and imagenet[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, 2018: 6546-6555.
|
[16] |
CAO Zhe, SIMON T, WEI S-E, et al. Realtime multi-person 2D pose estimation using part affinity fields[C]. The IEEE International Conference on Computer Vision, Honolulu, 2017: 7291-7299.
|
[17] |
WANG Xiaolong, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]. The IEEE International Conference on Computer Vision, Salt Lake City, 2018: 7794-7803.
|
[18] |
VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks[Z]. arXiv Preprint, arXiv: 1710.10903.
|
[19] |
KUEHNE H, JHUANG H, GARROTE E, et al. HMDB: a large video database for human motion recognition[C]. International Conference on Computer Vision, Barcelona, 2011: 2556-2563.
|
[20] |
SOOMORO K, ZAMIR A R, SHAH M. UCF101: a dataset of 101 human actions classes from videos in the wild[Z]. arXiv Preprint, arXiv: 1212.0402.
|
[1] | TAN Donggui, YUAN Yiping, FAN Panpan. Health status evaluation of CNN-GRU mine motor based on adaptive multi-scale attention mechanism[J]. Journal of Mine Automation, 2024, 50(2): 138-146. DOI: 10.13272/j.issn.1671-251x.2023110024 |
[2] | CHENG Deqiang, ZHENG Lijuan, LIU Jingjing, KOU Qiqi, JIANG He. Quantitative analysis of coal particle size based on bi-level routing attention mechanism[J]. Journal of Mine Automation, 2024, 50(2): 9-17. DOI: 10.13272/j.issn.1671-251x.2023100002 |
[3] | CAO Xiangang, LI Hu, WANG Peng, WU Xudong, XIANG Jingfang, DING Wentao. A coal foreign object detection method based on cross modal attention fusion[J]. Journal of Mine Automation, 2024, 50(1): 57-65. DOI: 10.13272/j.issn.1671-251x.2023110035 |
[4] | CAO Zhengyuan, JIANG Wei, FANG Chenghui. Intelligent detection method for coal flow foreign objects based on dual attention generative adversarial network[J]. Journal of Mine Automation, 2023, 49(12): 56-62. DOI: 10.13272/j.issn.1671-251x.18094 |
[5] | LI Zhongfei, FENG Shiyong, GUO Jun, ZHANG Yunhe, XU Feixiang. Lightweight safety helmet wearing detection fusing coordinate attention and multiscale feature[J]. Journal of Mine Automation, 2023, 49(11): 151-159. DOI: 10.13272/j.issn.1671-251x.2023080123 |
[6] | ZHU Fuwen, HOU Zhihui, LI Mingzhen. Lightweight multi-scale cross channel attention coal flow detection network[J]. Journal of Mine Automation, 2023, 49(8): 100-105. DOI: 10.13272/j.issn.1671-251x.2023030045 |
[7] | YE Ou, DOU Xiaoyi, FU Yan, DENG Jun. Coal block detection method integrating lightweight network and dual attention mechanism[J]. Journal of Mine Automation, 2021, 47(12): 75-80. DOI: 10.13272/j.issn.1671-251x.2021030075 |
[8] | LAI Cheng-yu. Research of Integrated Congestion Control Mechanism[J]. Journal of Mine Automation, 2012, 38(9): 75-78. |
[9] | LI Jian, LIU He-ping, LI Jie. Research of Routing Mechanism of Mine WS[J]. Journal of Mine Automation, 2012, 38(6): 48-51. |
[10] | XU Chang-sheng, ZHANG Yao-qing. A Self-Learning Mechanism Based on Objective and its Applicatio[J]. Journal of Mine Automation, 1995, 21(4): 32-35. |
1. |
郭孝园,朱美强,田军,朱贝贝. 基于深度学习的煤矿井下人员不安全行为检测与识别. 工矿自动化. 2025(03): 138-147 .
![]() | |
2. |
杨艺,杨艳磊,王田,王科平. 基于多重信息自注意力的综采工作面目标行为识别. 煤炭学报. 2025(02): 1425-1442 .
![]() | |
3. |
苏晨阳,武文红,牛恒茂,石宝,郝旭,王嘉敏,高勒,汪维泰. 深度学习的工人多种不安全行为识别方法综述. 计算机工程与应用. 2024(05): 30-46 .
![]() | |
4. |
孙晴,杨超宇. 基于多模态的井下登高作业专人扶梯检测方法. 工矿自动化. 2024(05): 142-150 .
![]() | |
5. |
邬心怡,邓志良,刘云平,董娟,李嘉琦. 基于交叉注意力机制的多特征行人重识别. 南京信息工程大学学报. 2024(04): 461-471 .
![]() | |
6. |
冯兴龙,吴田,万亚旭,肖宾,方春华,黎鹏,赵慧敏. 基于人-物交互关系检测的带电作业人员行为识别方法研究. 中国安全生产科学技术. 2024(09): 205-211 .
![]() | |
7. |
卢纪峰,杨超宇. 基于M3CFC-YOLOv7-tiny的矿工乘坐架空乘人装置违章行为识别研究. 煤矿安全. 2024(11): 250-256 .
![]() | |
8. |
田枫,卫宁彬,刘芳,韩玉祥,赵玲,张思睿,马贵宝. 基于时空-动作自适应融合网络的油田作业行为识别. 智能系统学报. 2024(06): 1407-1418 .
![]() | |
9. |
李善华,肖涛,李肖利,杨发展,姚勇,赵培培. 基于DRCA-GCN的矿工动作识别模型. 工矿自动化. 2023(04): 99-105+112 .
![]() | |
10. |
毛清华,郭文瑾,翟姣,王荣泉,尚新芒,李世坤,薛旭升. 煤矿带式输送机异常状态视频AI识别技术研究. 工矿自动化. 2023(09): 36-46 .
![]() | |
11. |
高祺,易妍,王燕萍. 一种电网综合场景技能评估方法. 科技与创新. 2023(20): 86-88 .
![]() | |
12. |
郝明月,闵冰冰,张新建,赵作鹏,吴晨,王欣. 基于改进YOLOv5s的矿工排队检测方法. 工矿自动化. 2023(11): 160-166 .
![]() |