LI Jing, HUANG Yourui, HAN Tao, LAN Shihao, CHEN Hongmao, GAN Fubao. Research on uncalibrated visual servo control of mine intelligent inspection robot[J]. Journal of Mine Automation, 2021, 47(11): 30-39. DOI: 10.13272/j.issn.1671-251x.2021030077
Citation: LI Jing, HUANG Yourui, HAN Tao, LAN Shihao, CHEN Hongmao, GAN Fubao. Research on uncalibrated visual servo control of mine intelligent inspection robot[J]. Journal of Mine Automation, 2021, 47(11): 30-39. DOI: 10.13272/j.issn.1671-251x.2021030077

Research on uncalibrated visual servo control of mine intelligent inspection robot

More Information
  • Received Date: March 26, 2021
  • Revised Date: August 24, 2021
  • In order to solve the problem of inaccurate estimation and poor robustness of image Jacobian matrix based on traditional Kalman filtering(KF)in the uncalibrated visual servo control of mine intelligent inspection robot, Kalman filtering algorithm with long and short-term memory(LSTM)(KFLSTM algorithm)is proposed.The KFLSTM algorithm uses the LSTM to compensate for the estimation error generated by the KF algorithm, uses the filter gain error, state estimation vector error and observation error for online training of the LSTM, and uses the trained LSTM model for optimal estimation of the Jacobian matrix to improve the real-time and robustness of visual servo control by improving the accuracy and stability of the Jacobian matrix estimation.The uncalibrated visual servo model based on the KFLSTM algorithm is established, and the most optimal Jacobian matrix is used as the input of the controller, which makes the controller output more accurate joint angular velocity so as to control the real-time operation of the manipulator.The KFLSTM algorithm is applied to the six-degree-of-freedom visual servo simulation experiment of the mine intelligent inspection robot.The results show that the image error convergence speed obtained by the KFLSTM algorithm is 100%-142% higher than that of the traditional KF algorithm, the image characteristic error is smaller, the positioning precision is 0.5 pixels, and the robot end effector moves smoothly.Moreover, the method has strong anti-noise interference capability, which can improve the precision and efficiency of the mine intelligent inspection robot effectively and enhance its stability and safety.
  • [1]
    潘祥生,陈晓晶.矿用智能巡检机器人关键技术研究[J].工矿自动化,2020,46(10):43-48.

    PAN Xiangsheng,CHEN Xiaojing.Research on key technologies of mine-used intelligent inspection robot[J].Industry and Mine Automation,2020,46(10):43-48.
    [2]
    康庆生,孟正大,戴先中.图像雅可比矩阵伪逆估计在视觉伺服中的应用[J].机器人,2006,28(4):406-409.

    KANG Qingsheng,MENG Zhengda,DAI Xianzhong.Application of pseudo-inverse estimation of image Jacobian matrixto visual servoing[J].Robot,2006,28(4):406-409.
    [3]
    赵杰,李牧,李戈,等.一种无标定视觉伺服控制技术的研究[J].控制与决策,2006,21(9):1015-1019.

    ZHAO Jie,LI Mu,LI Ge,et al.Study on uncalibrated visual servoing technique[J].Control and Decision,2006,21(9):1015-1019.
    [4]
    赵清杰,陈云蛟,张立群.基于粒子滤波的雅可比矩阵在线估计技术[J].北京理工大学学报,2008,28(5):401-404.

    ZHAO Qingjie,CHEN Yunjiao,ZHANG Liqun.On-line estimation of Jacobian matrix based on particle filter[J].Transactions of Beijing Institute of Technology,2008,28(5):401-404.
    [5]
    徐鹏,杨宏韬,李岩,等.基于扩展H∞粒子滤波算法的视觉伺服雅可比矩阵在线辨识[J].广西大学学报(自然科学版),2017,42(3):1051-1057.

    XU Peng,YANG Hongtao,LI Yan,et al.On-line identification of visual servo Jacobian matrix based on extended H∞ particle filter[J].Journal of Guangxi University(Natural Science Edition),2017,42(3):1051-1057.
    [6]
    WANG Fasheng,SUN Fuming,ZHANG Junxing,et al.Unscented particle filter for online total image Jacobian matrix estimation in robot visual servoing[J].IEEE Access,2019(99).DOI: 10.1109/ACCESS.2019.2927413.
    [7]
    梁喜凤,彭明,路杰,等.基于自适应无迹卡尔曼滤波的采摘机械手视觉伺服控制方法[J].农业工程学报,2019,35(19):230-237.

    LIANG Xifeng,PENG Ming,LU Jie,et al.Servo control method of picking manipulator based on adaptive traceless Kalman filter[J].Transactions of the Chinese Society of Agricultural Engineering,2019,35(19):230-237.
    [8]
    王新梅,魏武,刘玮,等.鲁棒卡尔曼滤波下的图像雅可比矩阵带时延补偿的估计[J].控制理论与应用,2015,32(8):1052-1057.

    WANG Xinmei,WEI Wu,LIU Wei,et al.Estimation of image Jacobian matrix with time-delay compensation basedon robust Kalman filtering[J].Control Theory & Applications,2015,32(8):1052-1057.
    [9]
    王洪斌,李萍.基于改进的卡尔曼滤波图像雅可比矩阵估计[J].武汉理工大学学报,2009,31(14):145-148.

    WANG Hongbin,LI Ping.On-line estimation for image Jacobian matrix based on improved Kalman filter[J].Journal of Wuhan University of Technology,2009,31(14):145-148.
    [10]
    章晓峰,李光,肖帆,等.基于BP神经网络的包装分拣机器人视觉标定算法[J].包装学报,2019,11(4):74-81.

    ZHANG Xiaofeng,LI Guang,XIAO Fan,et al.A visual calibration algorithm for packaging sorting robot based on BP neural network[J].Journal of Packaging Science and Technology,2019,11(4):74-81.
    [11]
    TSAI Z R,CHANG Y Z.Enhancing design of visual-servo delayed system[J].Journal of Electronic Science and Technology of China,2018,16(3):232-240.
    [12]
    CHI Gaoxuan.Application study of fuzzy ARTMAP neural network in robot servo system[J].Journal of Physics Conference Series,2018,1026(1):012024.DOI: 10.1088/1742-6596/1026/1/012024.
    [13]
    GU Jinan,WANG Hongmei,PAN Yuelong,et al.Neural network based visual servo control for CNC load/unload manipulator[J].Optik International Journal for Light and Electron Optics,2015,126(23):4489-4492.
    [14]
    NADI F,DERHAMI V,REZAEIAN M.Visual servoing control of robot manipulator with Jacobian matrix estimation[C]//Proceedings of the 2014 International Conference on Robotics and Mechatronics,2014:405-409.DOI: 10.1109/ICRoM.2014.6990935.
  • Related Articles

    [1]LI Guihu, GAO Guijun, LI Junxia, JIA Xuefeng. A pose recognition method for warehouse cleaning robots based on extended Kalman filtering[J]. Journal of Mine Automation, 2024, 50(5): 99-106. DOI: 10.13272/j.issn.1671-251x.2024020004
    [2]LI Chengcheng, MA Lisen, TIAN Yuan, JIA Yunhong, JIA Qu, TIAN Weiqin, ZHANG Kai. An onboard video stabilization algorithm for roadheader based on CLAHE and Kalman filter[J]. Journal of Mine Automation, 2023, 49(5): 66-73. DOI: 10.13272/j.issn.1671-251x.2022100002
    [3]YANG Jun. Aggregation enhanced coal-gangue video recognition model based on long and short-term storage[J]. Journal of Mine Automation, 2023, 49(3): 39-44, 62. DOI: 10.13272/j.issn.1671-251x.18058
    [4]WANG Wei. Underground precise positioning algorithm based on Kalman filter and weighted LM algorithm[J]. Journal of Mine Automation, 2019, 45(11): 5-9. DOI: 10.13272/j.issn.1671-251x.17500
    [5]SUN Zhexing , WANG Yanwen. Two-dimensional accurate personnel positioning method in underground coal mine based on Kalman filter[J]. Journal of Mine Automation, 2018, 44(5): 31-35. DOI: 10.13272/j.issn.1671-251x.17318
    [6]MA Xiaodong, SONG Bing, ZHANG Shubi, LIU Xin. Real time cycle slip detection of Beidou single frequency carrier phase based on Kalman filtering[J]. Journal of Mine Automation, 2016, 42(4): 58-61. DOI: 10.13272/j.issn.1671-251x.2016.04.014
    [7]ZHANG Lingtao, ZHANG Hui. Measurement algorithm of heading angle of roadheader based on Kalman filter[J]. Journal of Mine Automation, 2014, 40(11): 100-103. DOI: 10.13272/j.issn.1671-251x.2014.11.024
    [8]ZHAO Jing. Inertial navigation positioning method of shearer based on Kalman filtering algorithm[J]. Journal of Mine Automation, 2014, 40(10): 29-32. DOI: 10.13272/j.issn.1671-251x.2014.10.009
    [9]LUO Yu-feng, LIU Yong, LI Fang. Application of Kalman filter in underground personnel tracking and positioning[J]. Journal of Mine Automation, 2013, 39(9): 54-58. DOI: 10.7526/j.issn.1671-251X.2013.09.015
    [10]MA Ying-kui. Research of Multi-step Forecasting for Short-term Wind Speed[J]. Journal of Mine Automation, 2010, 36(9): 54-58.

Catalog

    GAN Fubao

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (178) PDF downloads (34) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return