NING Xiaoliang. Research status of early warning technology of coal and gas outburst and its development trend[J]. Journal of Mine Automation, 2019, 45(8): 25-31. DOI: 10.13272/j.issn.1671-251x.17464
Citation: NING Xiaoliang. Research status of early warning technology of coal and gas outburst and its development trend[J]. Journal of Mine Automation, 2019, 45(8): 25-31. DOI: 10.13272/j.issn.1671-251x.17464

Research status of early warning technology of coal and gas outburst and its development trend

More Information
  • Research achievements of early warning technology of coal and gas outburst were summarized and analyzed in detail from four aspects: early warning theory of coal and gas outburst, acquisition means of early warning information, early warning index and model and early warning software system. The main problems of existing early warning technology of coal and gas outburst were pointed out, for example, timeliness and reliability of part early warning information acquisition needed to be further improved, early models could not realize effective and deep data mining, etc. Development trend of early warning technology of coal and gas outburst was put forward, including development of early warning information monitoring and acquisition technology and equipment with high automation level and precision, research of early warning index and model based on big data, and development of early warning software system based on cloud technology.
  • Related Articles

    [1]ZHONG Xiaoxing, WANG Jiantao, ZHOU Kun. Monitoring and early warning technology of coal spontaneous combustion in coal mines: research status and intelligent development trends[J]. Journal of Mine Automation, 2021, 47(9): 7-17.. DOI: 10.13272/j.issn.1671-251x.17841
    [2]ZHANG Qinghua, NING Xiaoliang, SONG Zhiqiang, HE Shudong. Early warning technology of regional security situation of gas disasters[J]. Journal of Mine Automation, 2020, 46(7): 42-48. DOI: 10.13272/j.issn.1671-251x.17632
    [3]ZHENG Xuezhao, TONG Xin, GUO Jun, ZHANG Duo. Research status and development trend of intelligent monitoring and early warning technology in coal mine[J]. Journal of Mine Automation, 2020, 46(6): 35-40. DOI: 10.13272/j.issn.1671-251x.17530
    [4]QIU Liming, LI Zhonghui, WANG Enyuan, LIU Zhentang, ZHANG Younian, XIA Shankui. Research on remote intelligent monitoring and early warning system for coal and gas outburst[J]. Journal of Mine Automation, 2018, 44(1): 17-21. DOI: 10.13272/j.issn.1671-251x.17276
    [5]LI Mingjian. Monitoring and early warning system of coal and gas outburst based on heterogeneous data integratio[J]. Journal of Mine Automation, 2018, 44(1): 11-16. DOI: 10.13272/j.issn.1671-251x.17292
    [6]ZHAO Xusheng, NING Xiaoliang, ZHANG Qinghua, MA Guolong. Discussion on early warning method of coal and gas outburst[J]. Journal of Mine Automation, 2018, 44(1): 6-10. DOI: 10.13272/j.issn.1671-251x.17287
    [7]ZHU Zhen, WU Baolei, MENG Jie, TAO Yunqi, WANG Feng. Application of comprehensive early warning system of coal and gas outburst[J]. Journal of Mine Automation, 2017, 43(8): 87-90. DOI: 10.13272/j.issn.1671-251x.2017.08.017
    [8]XU Xuezhan, MENG Xiangrui, ZOU Yunlong. Coal and gas outburst early-warning technology based on change of gas concentratio[J]. Journal of Mine Automation, 2016, 42(9): 17-21. DOI: 10.13272/j.issn.1671-251x.2016.09.005
    [9]NING Xiaoliang, PU Yang. Design of early-warning system of gas outburst based on dynamic characteristics of pressure monitoring[J]. Journal of Mine Automation, 2015, 41(3): 10-13. DOI: 10.13272/j.issn.1671-251x.2015.03.003
    [10]ZHANG Bai-hui~, YANG Ming-qiang~. Research of Model of Hidden Trouble Recognizing and Early Warning for Natural Mine Disaster Based on GIS[J]. Journal of Mine Automation, 2008, 34(3): 15-18.
  • Cited by

    Periodical cited type(25)

    1. 赵晓亮. 基于大数据的煤与瓦斯突出预警技术. 能源与节能. 2023(02): 162-164 .
    2. 代晨昱,赵朋朋,徐晶. 矿用钻孔超声流量自适应检测技术. 煤田地质与勘探. 2022(01): 59-65 .
    3. 陈青. 无线节点式小孔径钻孔瓦斯抽采监测系统的研制. 工业仪表与自动化装置. 2022(03): 35-40 .
    4. 郭亚玲,江泽标,扶祥祥,吴少康. 基于模糊Bow-tie模型对煤与瓦斯突出危险性分析. 矿业工程研究. 2022(02): 42-48 .
    5. 赵旭生,马国龙,周密. 煤与瓦斯突出智能预警方法及系统. 矿业安全与环保. 2022(04): 150-156+162 .
    6. 曾明圣,施式亮,鲁义,李贺,吴宽,凌紫城. 基于免疫机理的瓦斯异常涌出预警. 湖南科技大学学报(自然科学版). 2022(03): 14-19 .
    7. 武熠明,徐明智,幸贞雄. 加油站员工不安全行为智能监测预警系统设计. 应用化工. 2022(S2): 308-311 .
    8. 谷丽朋. 煤与瓦斯突出综合预警系统的实践应用研究. 当代化工研究. 2021(10): 73-74 .
    9. 衡献伟,李青松,付金磊,左金芳. 贵州煤炭工业科技创新进展及“十四五”时期发展方向. 中国煤炭. 2021(05): 13-19 .
    10. 王麒翔. 防突预警系统在东李煤矿的应用及效果分析. 能源与环保. 2021(07): 209-214 .
    11. 陈永冉. 《防治煤与瓦斯突出细则》修订关键技术研究. 煤炭与化工. 2021(09): 101-105+108 .
    12. 方杰,李振璧,夏亮. 基于ECO-HC的钻杆计数方法. 煤炭技术. 2021(11): 186-189 .
    13. 陈凯,戴英健,张丽娟,李小龙. 基于煤与瓦斯突出声电实时监测预警系统的应用研究. 科技视界. 2021(34): 159-161 .
    14. 陈生昱,姚有利,周兆海,程超男. 煤矿瓦斯监测预警的研究. 山西化工. 2021(06): 113-116 .
    15. 谈国文. 复杂矿区煤与瓦斯突出灾害多参量预警系统建设与应用. 煤炭工程. 2020(03): 17-20 .
    16. 刘纯. 基于大数据的煤与瓦斯突出灾害预测方法与技术研究. 江苏科技信息. 2020(08): 50-52 .
    17. 宁小亮. 基于多源信息融合的煤与瓦斯突出动态预警模型. 矿业安全与环保. 2020(03): 1-5+16 .
    18. 刘纯. 煤与瓦斯突出预警技术研究现状及发展趋势分析. 无线互联科技. 2020(09): 133-134 .
    19. 张庆华,宁小亮,宋志强,和树栋. 瓦斯灾害区域安全态势预警技术. 工矿自动化. 2020(07): 42-48 . 本站查看
    20. 董金梅. 煤矿瓦斯事故智能预警系统优化设计. 机电工程技术. 2020(07): 249-250 .
    21. 张年维. 煤与瓦斯突出预警技术研究现状及发展趋势. 内蒙古煤炭经济. 2020(03): 106+108 .
    22. 宁小亮. 基于大数据的煤与瓦斯突出预警技术. 矿业安全与环保. 2020(04): 51-56 .
    23. 高瑞,郝乐,刘宝,文静怡,陈宇航. 基于改进ResNet网络的井下钻杆计数方法. 工矿自动化. 2020(10): 32-37 . 本站查看
    24. 代晨昱. 矿用钻孔瓦斯抽采多参数监测系统与装置. 煤田地质与勘探. 2020(05): 190-196+203 .
    25. 卢新明,张天宇,王永,涂辉,王红娟. 基于瓦斯涌出时序序列的煤与瓦斯突出离散模态预警方法. 煤矿安全. 2020(11): 175-179 .

    Other cited types(7)

Catalog

    Article Metrics

    Article views (144) PDF downloads (21) Cited by(32)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return