厚煤层大采高坚硬顶板巷道大变形控制方法

王绍威, 倪学宁, 徐敬帅, 李亚运, 王云峰, 李亚辉

王绍威,倪学宁,徐敬帅,等. 厚煤层大采高坚硬顶板巷道大变形控制方法[J]. 工矿自动化,2025,51(5):32-40. DOI: 10.13272/j.issn.1671-251x.2025040037
引用本文: 王绍威,倪学宁,徐敬帅,等. 厚煤层大采高坚硬顶板巷道大变形控制方法[J]. 工矿自动化,2025,51(5):32-40. DOI: 10.13272/j.issn.1671-251x.2025040037
WANG Shaowei, NI Xuening, XU Jingshuai, et al. Large deformation control methods for roadways in thick coal seams with high mining height and hard roof[J]. Journal of Mine Automation,2025,51(5):32-40. DOI: 10.13272/j.issn.1671-251x.2025040037
Citation: WANG Shaowei, NI Xuening, XU Jingshuai, et al. Large deformation control methods for roadways in thick coal seams with high mining height and hard roof[J]. Journal of Mine Automation,2025,51(5):32-40. DOI: 10.13272/j.issn.1671-251x.2025040037

厚煤层大采高坚硬顶板巷道大变形控制方法

基金项目: 

山西省中央引导地方科技发展资金项目(YDZX20201400003883)。

详细信息
    作者简介:

    王绍威(1984—),男,山西大同人,工程师,从事煤矿采掘方面的工作,E-mail:522472426@qq.com

  • 中图分类号: TD353

Large deformation control methods for roadways in thick coal seams with high mining height and hard roof

  • 摘要:

    针对厚煤层大采高坚硬顶板围岩控制,传统留煤柱的巷道布置方式会引起巷道强矿压显现,导致巷道围岩大变形、冲击地压等破坏性问题。基于开挖理论,介绍了对应的开挖补偿理论,构建了切顶卸压与高预应力吸能相耦合的支护体系:通过定向预裂切缝切断巷道顶板与采空区顶板间的应力传递,减小巷道围岩积聚的弹性应变能;研发了NPR高预应力锚索,利用NPR高预应力锚索支护构件对巷道围岩进行控制,当煤岩体产生的荷载超过某一阈值时,支护构件通过变形吸收冲击能,削弱煤岩体积聚的能量。为满足切顶卸压无煤柱开采技术需求,提出了顶板定向切缝和矸石巷帮挡矸2项关键技术。现场工程试验结果表明,该技术卸压效果显著,切缝侧卸压比最高可达19.5%,显著减小了巷道围岩变形速率及变形量,最大围岩变形量仅为52 mm,取得了较好的围岩控制效果。

    Abstract:

    For the control of surrounding rock in thick coal seams with high mining heights and hard roofs, the traditional roadway layouts employing coal pillars often induce strong strata behavior, resulting in large deformations, rock bursts, and other destructive issues in surrounding rock. Based on excavation theory, an excavation compensation theory was introduced, and a support system coupling roof-cutting pressure relief with high pre-stressed energy absorption was constructed. Directional pre-splitting fractures were introduced to sever stress transmission between the roadway roof and goaf roof, thereby reducing accumulated elastic strain energy in the surrounding rock. NPR (Negative Poisson's Ratio) high prestressed anchor cables were developed to control surrounding rock deformation. When the load generated by the coal-rock mass exceeded a critical threshold, the supporting components absorbed the impact energy through deformation, mitigating energy accumulation. To meet the technical requirements of non-pillar mining with roof-cutting for pressure relief, two key techniques, namely directional roof-cutting and gangue roadway side support, were proposed. Field tests demonstrated significant pressure relief effects, with the maximum pressure-relief ratio on the cutting side reaching up to 19.5%. The surrounding rock deformation rate and magnitude were significantly reduced, with the maximum deformation limited to 52 mm, confirming superior strata control performance.

  • 图  1   开挖理论

    Figure  1.   Excavation theory

    图  2   开挖补偿理论

    Figure  2.   Excavation compensation theory

    图  3   数值模型

    Figure  3.   Numerical model

    图  4   巷道围岩弹性应变能分布

    Figure  4.   Distribution of elastic strain energy in roadway surrounding rock

    图  5   理想塑性材料应力应变曲线

    Figure  5.   Ideal plastic material stress-strain curves

    图  6   不同材料颈缩现象

    Figure  6.   Necking phenomenon in different materials

    图  7   NPR恒阻结构

    Figure  7.   NPR constant resistance structure

    图  8   NPR高预应力锚索

    Figure  8.   NPR high prestressed anchor cable

    图  9   拉伸试验结果

    Figure  9.   Tensile test results

    图  10   切顶卸压无煤柱自成巷技术

    Figure  10.   Non-pillar roadway formation technology via roof cutting for pressure relief

    图  11   顶板定向切缝技术

    Figure  11.   Directional roof cutting technology

    图  12   矸石巷帮挡矸支护技术

    Figure  12.   Gangue roadway side support technology

    图  13   工作面布置及煤层柱状图

    Figure  13.   Working face layout and coal seam bar chart

    图  14   顶板预裂切缝参数及支护断面

    Figure  14.   Roof pre-splitting parameters and support cross-section

    图  15   双向聚能管装药结构

    Figure  15.   Charge structure of bidirectional energy-gathering pipe

    图  16   滞后临时支护断面

    Figure  16.   Delayed temporary support section

    图  17   工作面液压支架工作阻力

    Figure  17.   Working resistance of hydraulic support at working face

    图  18   顶底板移近量曲线

    Figure  18.   Roof-to-floor convergence curve

  • [1] 王琦,江贝,辛忠欣,等. 无煤柱自成巷三维地质力学模型试验系统研制与工程应用[J]. 岩石力学与工程学报,2020,39(8):1582-1594.

    WANG Qi,JIANG Bei,XIN Zhongxin,et al. Development of a 3D geomechanical model test system for non-pillar mining with automatically formed roadway and its engineering application[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(8):1582-1594.

    [2] 赵建光,刘振华,李海龙,等. 厚煤层复合顶板强矿压沿空掘巷围岩应力动态分布规律研究[J]. 采矿技术,2025,25(1):64-71. DOI: 10.3969/j.issn.1671-2900.2025.01.012

    ZHAO Jianguang,LIU Zhenhua,LI Hailong,et al. Study on dynamic distribution law of surrounding rock stress in gob-side entry driving under strong ground pressure with composite roof in thick coal seam[J]. Mining Technology,2025,25(1):64-71. DOI: 10.3969/j.issn.1671-2900.2025.01.012

    [3] 焦彪,马宏源,郝宝利,等. 强冲击特厚煤层见方复合构造区域降载防冲技术研究[J]. 工矿自动化,2025,51(4):146-152.

    JIAO Biao,MA Hongyuan,HAO Baoli,et al. Research on load reduction and rockburst prevention technology in areas with square composite structures of extra-thick coal seams under strong impact[J]. Journal of Mine Automation,2025,51(4):146-152.

    [4] 高瑞,戴祥淋,于斌,等. 特厚煤层孤岛工作面坚硬顶板矿压动力灾害地面区域压裂防控研究[J]. 采矿与安全工程学报,2025,42(3):532-543.

    GAO Rui,DAI Xianglin,YU Bin,et al. Study on prevention and control of roof dynamic disasters by ground regional fracturing in isolated working face of extra-thick coal seam mining[J]. Journal of Mining & Safety Engineering,2025,42(3):532-543.

    [5] 李延军. 采动作用下复合坚硬顶板破断失稳及预裂弱化特征[J/OL]. 煤炭学报,2025:1-13[2025-04-28]. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=MTXB20250424002&;dbname=CJFD&dbcode=CJFQ.

    LI Yanjun. Characteristics of fracture instability and pre-splitting weakening of composite hard roof under mining action[J/OL]. China Industrial Economics,2025:1-13[2025-04-28]. http://kns.cnki.net/KCMS/detail/detail.aspx? filename=MTXB20250424002&dbname=CJFD&dbcode=CJFQ.

    [6] 岳帅帅,谢生荣,陈冬冬,等. 15 m特厚煤层综放高强度开采窄煤柱围岩控制研究[J]. 采矿与安全工程学报,2017,34(5):905-913.

    YUE Shuaishuai,XIE Shengrong,CHEN Dongdong,et al. Research on surrounding rocks control of narrow pillar with high-intensity fully-mechanized top coal caving mining in 15 m ultra-thick coal seam[J]. Journal of Mining & Safety Engineering,2017,34(5):905-913.

    [7] 刘垚鑫,高明仕,贺永亮,等. 倾斜特厚煤层综放沿空掘巷围岩稳定性研究[J]. 中国矿业大学学报,2021,50(6):1051-1059. DOI: 10.3969/j.issn.1000-1964.2021.6.zgkydxxb202106004

    LIU Yaoxin,GAO Mingshi,HE Yongliang,et al. Study of control technology about gob-side entry driving with top-coal caving in inclined extra-thick coal seam[J]. Journal of China University of Mining & Technology,2021,50(6):1051-1059. DOI: 10.3969/j.issn.1000-1964.2021.6.zgkydxxb202106004

    [8] 董合祥. 特厚煤层综放开采沿空掘巷窄煤柱围岩控制[J]. 采矿与岩层控制工程学报,2021,3(3):32-42.

    DONG Hexiang. Ground control of narrow coal pillar in gob side entry driving with fully mechanized top coal caving mining in extra-thick coal seam[J]. Journal of Mining and Strata Control Engineering,2021,3(3):32-42.

    [9] 郭重托. 特厚煤层迎采扰动沿空掘巷围岩控制技术研究[J]. 煤炭工程,2020,52(11):42-46.

    GUO Zhongtuo. Surrounding rock control for gob-side entry driving toward mining disturbance in extra-thick coal seam[J]. Coal Engineering,2020,52(11):42-46.

    [10] 邰阳. 坚硬顶板采场定向造缝覆岩三维破断特征及应力场演化规律[D]. 徐州:中国矿业大学,2021.

    TAI Yang. 3D breaking characteristics of overlying strata and stress field evolution law in stope with directional hard roof cutting[D]. Xuzhou:China University of Mining and Technology,2021.

    [11] 李英杰,倪婷,左建平,等. 坚硬顶板定向水力压裂裂纹起裂机制及影响因素分析[J]. 岩石力学与工程学报,2022,41(10):2015-2029.

    LI Yingjie,NI Ting,ZUO Jianping,et al. Analysis of crack initiation mechanism and influencing factors of hard roofs due to directional hydraulic fracturing[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(10):2015-2029.

    [12] 杨俊哲,郑凯歌,王振荣,等. 坚硬顶板动力灾害超前弱化治理技术[J]. 煤炭学报,2020,45(10):3371-3379.

    YANG Junzhe,ZHENG Kaige,WANG Zhenrong,et al. Technology of weakening and danger-breaking dynamic disasters by hard roof[J]. Journal of China Coal Society,2020,45(10):3371-3379.

    [13] 孙闯,陈东旭,程耀辉,等. 急倾斜煤层坚硬顶板塌落规律及控制研究[J]. 岩石力学与工程学报,2019,38(8):1647-1658.

    SUN Chuang,CHEN Dongxu,CHENG Yaohui,et al. Study on collapse rule and control of hard roofs in steeply inclined coal seams[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(8):1647-1658.

    [14] 董合祥,段宏飞,王亚军. 特厚煤层坚硬顶板临空煤巷强矿压显现机理及控制技术[J]. 煤矿安全,2018,49(9):271-275.

    DONG Hexiang,DUAN Hongfei,WANG Yajun. Mechanism and control technology of strong strata behavior of gob-side entry in extra thick coal seam with hard roof[J]. Safety in Coal Mines,2018,49(9):271-275.

    [15] 弓培林,靳钟铭. 大采高采场覆岩结构特征及运动规律研究[J]. 煤炭学报,2004,29(1):7-11. DOI: 10.3321/j.issn:0253-9993.2004.01.002

    GONG Peilin,JIN Zhongming. Study on the structure characteristics and movement laws of overlying strata with large mining height[J]. Journal of China Coal Society,2004,29(1):7-11. DOI: 10.3321/j.issn:0253-9993.2004.01.002

    [16] 何满潮. 无煤柱自成巷开采理论与110工法[J]. 采矿与安全工程学报,2023,40(5):869-881.

    HE Manchao. Theory and engineering practice for non-pillars mining with automagical entry formation and 110 mining method[J]. Journal of Mining & Safety Engineering,2023,40(5):869-881.

    [17] 潘俊锋,康红普,闫耀东,等. 顶板“人造解放层” 防治冲击地压方法、机理及应用[J]. 煤炭学报,2023,48(2):636-648.

    PAN Junfeng,KANG Hongpu,YAN Yaodong,et al. The method,mechanism and application of preventing rock burst by artificial liberation layer of roof[J]. Journal of China Coal Society,2023,48(2):636-648.

    [18] 杨胜利. 基于中厚板理论的坚硬厚顶板破断致灾机制与控制研究[D]. 徐州:中国矿业大学,2019.

    YANG Shengli. Study on the disaster-causing mechanism and control criteria of the hard and thick roof strata based on medium thick plate theory[D]. Xuzhou:China University of Mining and Technology,2019.

    [19] 崔佐军,范小龙,马秉亮,等. 特厚煤层坚硬顶板沿空巷道支−卸协同控制技术及实践[J]. 煤炭科技,2023,44(4):137-142,149.

    CUI Zuojun,FAN Xiaolong,MA Bingliang,et al. Collaborative control technology and practice of supporting and unloading in gob-side entry with hard roof in extra-thick coal seam[J]. Coal Science & Technology Magazine,2023,44(4):137-142,149.

    [20] 于斌,邰阳,匡铁军,等. 大空间采场远近场坚硬顶板井上下控制理论及技术体系[J]. 煤炭学报,2023,48(5):1875-1893.

    YU Bin,TAI Yang,KUANG Tiejun,et al. Theory and technical system of control of far-near field hard roofs from ground and underground in a large space stope[J]. Journal of China Coal Society,2023,48(5):1875-1893.

    [21] 马宏源,潘俊锋,席国军,等. 坚硬顶板强冲击工作面多巷交叉区域防冲技术[J]. 工矿自动化,2022,48(4):121-127.

    MA Hongyuan,PAN Junfeng,XI Guojun,et al. Rock burst prevention technology in multi-roadway intersection area of hard roof strong impact working face[J]. Journal of Mine Automation,2022,48(4):121-127.

图(18)
计量
  • 文章访问数:  55
  • HTML全文浏览量:  16
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-14
  • 修回日期:  2025-05-27
  • 网络出版日期:  2025-06-05
  • 刊出日期:  2025-05-14

目录

    LI Yahui

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回