Design of a double-blade swirl wet dust collector for comprehensive mining faces
-
摘要:
针对目前用于煤矿综掘工作面环境的除尘器除尘效率低的问题,设计了一种双叶旋流湿式除尘器。根据功能树法确定了该除尘器主要由环状喷雾装置、双旋流叶片、折流除雾板等组成,设计了双旋流叶片以提供更大的离心力,从而提高除尘效率。采用数值模拟方法分析了喷嘴口径、喷雾压力、叶片安装角、叶片转速对除尘器除尘效率的影响规律,基于响应曲面法建立了除尘效率与4种影响因素之间的多元回归方程,得出了令除尘器除尘效率最高的最佳参数:叶片安装角37°,转速1 550 r/min,喷雾压力1.9 MPa,喷雾口径2 mm。基于该参数建立了双叶旋流湿式除尘器虚拟样机,通过仿真得出除尘器的除尘效率为97.21%,安装除尘器后巷道回风侧行人呼吸带粉尘浓度大幅降低。在除尘实验平台及模拟巷道对除尘器模拟机进行测试,结果表明:除尘器的除尘效率平均值为94.80%;应用除尘器后,巷道回风侧行人呼吸带高度平均粉尘浓度由应用前的441.29 mg/m3降低至为269.14 mg/m3,降幅达39.0%。
Abstract:To address the issue of low dust collection efficiency of dust collectors currently used in the environment of coal mine comprehensive mining faces, a double-blade swirl wet dust collector was designed. The dust collector was mainly composed of an annular spray device, double swirl blades, and baffle mist eliminators, with the double swirl blades designed to provide greater centrifugal force and thus improve dust collection efficiency. A numerical simulation method was used to analyze the effects of nozzle diameter, spray pressure, blade installation angle, and blade rotational speed on dust collection efficiency. Based on the response surface methodology, a multivariable regression equation was established between dust collection efficiency and the four influencing factors. The optimal parameters for maximum dust collection efficiency were determined as follows: blade installation angle of 37°, rotational speed of
1550 r/min, spray pressure of 1.9 MPa, and nozzle diameter of 2 mm. Using these parameters, a virtual prototype of the double-blade swirl wet dust collector was established, and simulation results showed that the dust collection efficiency of the dust collector reached 97.21%. After the installation of the dust collector, the dust concentration in the breathing zone of workers on the return air side of the tunnel significantly decreased. Tests on a dust collection experimental platform and in a simulated tunnel indicated that the average dust collection efficiency of the dust collector was 94.80%. After the application of the dust collector, the average dust concentration at the breathing zone of workers on the return air side of the tunnel decreased from 441.29 mg/m3 to 269.14 mg/m3, a reduction of 39.0%. -
-
表 1 双叶旋流湿式除尘器初始参数
Table 1 Initial parameters of double-blade swirl wet dust collector
参数 值 参数 值 处理风量/(m3·min−1) 400~600 供水压力/MPa 1~3 叶片转速/(r·min−1) 1 000~2 000 直径/mm 1 000 叶片安装角/(°) 20~60 长度/mm 2 000 用水量/(L·m−3) ≤0.2 喷嘴口径/mm 1.6~2.4 表 2 喷雾参数设置
Table 2 Spray parameters setting
参数 值 参数 值 耦合频率 20 雾化半角/(°) 20 雾滴材料 Waterliquid 破碎模型 TAB 喷射方式 Pressure−swirl−atomizer 喷嘴口径/m 0.002 质量流率/(kg·s−1) 0.02 喷雾压力/MPa 2 喷射时间/s 100 表 3 粉尘参数设置
Table 3 Dust parameters setting
参数 值 参数 值 耦合频率 20 最小粒径/m 1×10−6 粉尘材料 Coal−mv 中位粒径/m 6.03×10−5 喷射方式 Surface 粒径分布规律 Rosin−Rammler 质量流率/(kg·s−1) 0.008 粒径个数 10 最大粒径/m 1×10−4 湍流扩散模型 DRW模型 表 4 基于响应曲面法的四因素三水平方案
Table 4 Four-factor three-level scheme based on response surface method
水平 因素 A/(°) B/(r·min−1) C/MPa D/mm 1 30 1 250 1.5 1.8 2 40 1 500 2.0 2.0 3 50 1 750 2.5 2.2 表 5 不同因素下的除尘器除尘效率模拟实验结果
Table 5 Simulated experiment results of dust removal efficiency of dust collector under different factors
方案 A/(°) B/(r·min−1) C/MPa D/mm R/(mg·m−3) 1 40 1 500 2.0 2.0 93.15 2 40 1 500 2.5 1.8 88.57 3 50 1 500 1.5 2.0 81.57 4 40 1 750 2.0 2.2 91.38 5 40 1 500 2.0 2.0 96.02 6 40 1 500 2.0 2.0 95.39 7 50 1 750 2.0 2.0 75.55 8 30 1 500 2.5 2.0 89.17 9 40 1 250 1.5 2.0 86.26 10 40 1 500 1.5 2.2 91.65 11 30 1 250 2.0 2.0 81.65 12 50 1 500 2.0 2.2 77.54 13 40 1 250 2.5 2.0 85.51 14 40 1 500 2.0 2.0 94.93 15 40 1 250 2.0 1.8 87.35 16 30 1 500 2.0 2.2 86.34 17 50 1 500 2.0 2.2 89.22 18 40 1 500 2.0 1.8 78.76 19 40 1 500 2.0 1.8 94.82 20 40 1 500 1.5 1.8 95.62 21 50 1 250 2.0 2.0 78.65 22 30 1 750 2.0 2.0 91.35 23 40 1 500 2.5 2.2 85.84 24 40 1 500 2.0 2.0 96.19 表 6 除尘器除尘效率响应曲面模型方差分析
Table 6 Variance analysis of response surface model for dust removal efficiency of dust collector
项目 平方和 自由度 均方 显著性检验值 F P 因素 A 310.800 0 1 310.800 0 93.270 0 <0.000 1 B 12.810 0 1 12.810 0 3.840 0 0.070 1 C 37.070 0 1 37.070 0 11.120 0 0.004 9 D 4.060 0 1 4.060 0 1.220 0 0.288 2 AB 40.960 0 1 40.960 0 12.290 0 0.003 5 AC 29.380 0 1 29.380 0 8.820 0 0.010 2 AD 0.8190 01 0.819 0 0.245 8 0.627 8 BC 0.403 2 1 0.403 2 0.121 0 0.733 1 BD 1.270 0 1 1.270 0 0.381 5 0.546 7 CD 0.384 4 1 0.384 4 0.115 4 0.739 2 A2 543.390 0 1 543.390 0 163.070 0 <0.000 1 B2 145.080 0 1 145.080 0 43.540 0 <0.000 1 C2 87.480 0 1 87.480 0 26.250 0 0.000 2 D2 17.590 0 1 17.590 0 5.280 0 0.037 5 模型 1 108.650 0 14 79.190 0 23.760 0 <0.000 1 残差 46.650 0 14 3.330 0 — — 失拟项 40.710 0 10 4.070 0 2.740 0 0.171 8 表 7 除尘实验结果
Table 7 Experimental data of dust removal
序号 测点处粉尘浓度/(mg·m−3) 2—4号测点粉尘
浓度平均值/(mg·m−3)除尘
效率/%1号 2号 3号 4号 1 905.72 52.64 56.85 34.38 47.96 94.70 2 832.81 36.24 23.36 28.18 29.26 96.49 3 854.47 30.54 57.13 48.55 45.41 94.69 4 866.95 69.28 47.50 57.63 58.13 93.30 -
[1] 王国法,任世华,庞义辉,等. 煤炭工业“十三五” 发展成效与“双碳” 目标实施路径[J]. 煤炭科学技术,2021,49(9):1-8. WANG Guofa,REN Shihua,PANG Yihui,et al. Development achievements of China's coal industry during the 13th Five-Year Plan period and implementation path of "dual carbon" target[J]. Coal Science and Technology,2021,49(9):1-8.
[2] 袁亮. 煤矿粉尘防控与职业安全健康科学构想[J]. 煤炭学报,2020,45(1):1-7. YUAN Liang. Scientific conception of coal mine dust control and occupational safety[J]. Journal of China Coal Society,2020,45(1):1-7.
[3] 王双明,申艳军,宋世杰,等. “双碳”目标下煤炭能源地位变化与绿色低碳开发[J]. 煤炭学报,2023,48(7):2599-2612. WANG Shuangming,SHEN Yanjun,SONG Shijie,et al. Change of coal energy status and green and low-carbon development under the "dual carbon" goal[J]. Journal of China Coal Society,2023,48(7):2599-2612.
[4] 葛世荣,张晞,薛光辉,等. 我国煤矿煤机智能技术与装备发展研究[J]. 中国工程科学,2023,25(5):146-156. DOI: 10.15302/J-SSCAE-2023.05.013 GE Shirong,ZHANG Xi,XUE Guanghui,et al. Development of intelligent technologies and machinery for coal mining in China's underground coal mines[J]. Strategic Study of CAE,2023,25(5):146-156. DOI: 10.15302/J-SSCAE-2023.05.013
[5] 肖鹏. 矿井粉尘防治机理与除尘增效技术研究及展望[J]. 西安科技大学学报,2022,42(6):1052. XIAO Peng. Research and prospect for dust control mechanism and efficiency enhanced technology of dust removal in coal mines[J]. Journal of Xi'an University of Science and Technology,2022,42(6):1052.
[6] 赵健,张耿城. 深井矿山通风治尘前沿技术及发展态势[J]. 矿业工程,2018,16(5):62-64. ZHAO Jian,ZHANG Gengcheng. Cutting-edge technology and development trend of ventilation and dust control in deep-level mines[J]. Mining Engineering,2018,16(5):62-64.
[7] 李小川,胡亚非,张巍,等. 湿式除尘器综合运行参数的影响[J]. 中南大学学报(自然科学版),2013,44(2):862-866. LI Xiaochuan,HU Yafei,ZHANG Wei,et al. Effect of operation parameters of wet dust collector[J]. Journal of Central South University (Science and Technology),2013,44(2):862-866.
[8] 李刚,王运敏,金龙哲. 移动式矿用湿式振弦旋流除尘器的机理分析及实验研究[J]. 金属矿山,2019(9):167-171. LI Gang,WANG Yunmin,JIN Longzhe. Mechanical analysis and experimental research of mobile wet vibrating string cyclone dust collector for mine[J]. Metal Mine,2019(9):167-171.
[9] 江丙友,张琦,朱志辉,等. 湿式除尘器中气水喷雾降尘效果试验研究[J]. 金属矿山,2023(7):82-90. JIANG Bingyou,ZHANG Qi,ZHU Zhihui,et al. Experimental study on dust reduction effect of air-water spray in wet dust collector[J]. Metal Mine,2023(7):82-90.
[10] KURELLA S,MEIKAP B C. Removal of fly-ash and dust particulate matters from syngas produced by gasification of coal by using a multi-stage dual-flow sieve plate wet scrubber[J]. Journal of Environmental Science and Health,Part A,2016,51(10):870-876. DOI: 10.1080/10934529.2016.1181465
[11] 邓有凡,王伟黎,巫亮,等. 湿式除尘器优化设计研究[J]. 矿业安全与环保,2016,43(6):25-28. DOI: 10.3969/j.issn.1008-4495.2016.06.007 DENG Youfan,WANG Weili,WU Liang,et al. Research on optimization design of wet dust collector[J]. Mining Safety & Environmental Protection,2016,43(6):25-28. DOI: 10.3969/j.issn.1008-4495.2016.06.007
[12] 王海桥,陈世强,李轶群,等. 矿用湿式多通道轴向离心除尘装置及其优化[J]. 中国安全生产科学技术,2014,10(5):134-141. WANG Haiqiao,CHEN Shiqiang,LI Yiqun,et al. Design and optimization on a wetted axial multi-channel centrifugal dedusting device[J]. Journal of Safety Science and Technology,2014,10(5):134-141.
[13] HU Shengyong,GAO Yang,FENG Guorui,et al. Experimental study of the dust-removal performance of a wet scrubber[J]. International Journal of Coal Science & Technology,2021,8(2):228-239.
[14] 赵海鸣,谢信,夏毅敏,等. 湿式除尘风机三相除尘运行参数研究[J]. 中南大学学报(自然科学版),2017,48(6):1505-1512. DOI: 10.11817/j.issn.1672-7207.2017.06.013 ZHAO Haiming,XIE Xin,XIA Yimin,et al. Research on operation parameters of three-phase flow in wet dust collecting fan[J]. Journal of Central South University(Science and Technology),2017,48(6):1505-1512. DOI: 10.11817/j.issn.1672-7207.2017.06.013
[15] 杨洁,胡胜勇,刘湃,等. 矿用湿式除尘器研发现状与发展趋势[J]. 煤矿安全,2023,54(8):186-194. YANG Jie,HU Shengyong,LIU Pai,et al. Research status and development trend of wet dust collector for mine[J]. Safety in Coal Mines,2023,54(8):186-194.
[16] 李琛,马玉山,高强,等. 基于Realizable k-ε模型的控制阀流场特性研究[J]. 宁夏大学学报(自然科学版),2014,35(4):328-331. DOI: 10.3969/j.issn.0253-2328.2014.04.009 LI Chen,MA Yushan,GAO Qiang,et al. Study on control valve flow field characteristics based on Realizable k-ε turbulent model[J]. Journal of Ningxia University (Natural Science Edition),2014,35(4):328-331. DOI: 10.3969/j.issn.0253-2328.2014.04.009
[17] XIONG Guilong,GAO Zisheng,HONG Congjie,et al. Effect of the rolling friction coefficient on particles' deposition morphology on single fibre[J]. Computers and Geotechnics,2020,121. DOI: 10.1016/j.compgeo.2020.103450.
[18] LI Zhengquan,ZHANG Pei,SUN Yongchang,et al. Discrete particle simulation of gas-solid flow in air-blowing seed metering device[J]. Computer Modeling in Engineering & Sciences,2021,127(3):1119-1132.
[19] ZHANG Shuangming,ZHOU Tuo,WU Haowen,et al. Experimental study on gas–solid flow and heat transfer characteristics in downer moving bed[J]. Asia-Pacific Journal of Chemical Engineering,2023,18(5). DOI: 10.1002/APJ.2944.
[20] 龚晓燕,樊江江,刘壮壮,等. 综掘面出风口及抽风口风流综合调控下粉尘场优化分析[J]. 煤炭学报,2021,46(增刊2):800-809. GONG Xiaoyan,FAN Jiangjiang,LIU Zhuangzhuang,et al. Optimization analysis of dust field under comprehensive control of air outlet and exhaust air flow in fully mechanized excavation face[J]. Journal of China Coal Society,2021,46(S2):800-809.
[21] 龚晓燕,赵少龙,刘壮壮,等. 掘进面风流监测及适应性智能调控系统研制[J]. 安全与环境学报,2023,23(2):424-434. GONG Xiaoyan,ZHAO Shaolong,LIU Zhuangzhuang,et al. Development of airflow monitoring and adaptive intelligent control system for heading face[J]. Journal of Safety and Environment,2023,23(2):424-434.
-
期刊类型引用(10)
1. 张福锁. 基于数据融合的井下连续采煤机自动定位方法的研究. 自动化应用. 2023(14): 180-182 . 百度学术
2. 葛世荣,王世佳,曹波,王世博,吕嘉晨. 智能采运机组自主定位原理与技术. 煤炭学报. 2022(01): 75-86 . 百度学术
3. 孙梦祯,李娟莉,谢嘉成,李素华. 综采工作面虚拟监测系统界面交互设计. 包装工程. 2022(06): 134-142 . 百度学术
4. 曹建东. 煤矿综采工作面采煤机截割系统方案设计与应用. 机械管理开发. 2022(06): 227-228+231 . 百度学术
5. 胡相捧,刘新华. 初撑阶段的支架位姿与驱动千斤顶一一映射及调整策略. 采矿与安全工程学报. 2021(04): 666-677 . 百度学术
6. 武俊,刘瀚文. 基于捷联惯导系统的采煤机定位方法. 工矿自动化. 2021(S2): 19-22 . 本站查看
7. 刘瀚文. 基于捷联惯导系统的采煤机定位技术. 能源与环保. 2021(08): 221-224 . 百度学术
8. 巩剑波,任文永,郭帅. 采煤机姿态矫正系统研究综述. 煤炭技术. 2020(01): 158-161 . 百度学术
9. 张丹,郝尚清,宋胜伟. 运动状态检测的采煤机捷联惯导系统误差组合算法. 黑龙江科技大学学报. 2019(03): 299-303 . 百度学术
10. 刘宇,陈根林,刘永忠. 煤矿全断面掘进机捷联惯导曲线测量系统. 工矿自动化. 2019(08): 65-69+73 . 本站查看
其他类型引用(11)