Research on unmanned driving system of mine-used truck
-
摘要: 随着大型露天煤矿开采深度下探,坡度大、弯道多的现象逐渐增多,矿车驾驶难度高且存在安全隐患。提出了一种露天煤矿卡车无人驾驶系统设计方案,该无人驾驶系统包含车载自动驾驶子系统、车地无线通信子系统、地面管理子系统,可实现矿用卡车“装、运、卸”作业过程的完全无人自主运行。为满足露天煤矿非结构化环境感知需求,提出了面向露天煤矿非结构化环境的多源异构传感器融合感知算法;针对矿用卡车在不同载质量与不同坡度中的行驶需求,提出了考虑质量与坡度的纵向自适应控制算法,以适应不同载质量下坡停、坡起、定点停车与车铲配合停车等工况下的纵向速度控制与距离控制要求;针对矿区大曲率转向、倒退等行驶需求,提出了基于变参数自适应的前进横向控制方法与后退横向控制方法,以达到矿区全部复杂路面横向精确控制要求。该无人驾驶系统在哈尔乌素露天煤矿进行了泥泞路面、夜间环境等不同环境的测试,结果表明,该无人驾驶系统具备矿区作业能力,能够准确循迹并自主避障与执行任务;地面控制系统能够控制无人矿用卡车的启动与关闭,在必要情况可远程控制与驾驶矿用卡车,系统各项功能平稳可靠。指出了矿山无人驾驶系统的发展趋势:① 对于车载系统,需首先构建系统化与产品化思维,以产品形式选择相应硬件,提升硬件的矿区适应性;感知系统应着重提升复杂重尘环境下的目标识别能力,提高检测冗余度;控制系统应着重提高线控执行器响应速度,提高载质量获取准确性;决策系统应从导向安全出发,进一步考虑导向高效,提高系统作业效率。② 对于地面系统,应充分融合前一阶段数字化矿山的既有成果,兼容当前矿区调度管理系统;应着重开发混跑与多车协同管理系统,具备多车调度中的效率与节能控制指标;应大力发展“云控”技术,利用V2X(车辆与外界的信息交换)等先进手段,提升无人驾驶系统协同安全。Abstract: With the deep exploration of large open-pit coal mines, the phenomenon of steep slopes and many bends has gradually increased. Moreover, the mine-used truck driving is difficult and there are hidden safety hazards. Therefore, a design scheme of unmanned driving system for open-pit coal mine trucks is proposed. The unmanned driving system includes a vehicular autonomous package, a vehicle-to-ground wireless data communication system and a ground management system. The driving system can realize the completely unmanned autonomous operation of ‘loading, transporting and unloading’ of mine-used trucks. In order to meet the demand of unstructured environment sensing in open-pit coal mines, a multi-source heterogeneous sensor fusion sensing algorithm for the unstructured environment of open-pit coal mines is proposed. According to the driving demand of mine-used trucks in different load qualities and different slopes, a longitudinal adaptive control algorithm considering the quality and slope is proposed to meet the requirements of longitudinal speed control and distance control under the working conditions of slope stop, slope start, fixed-point stop and shovel stop with different load qualities of mine-used trucks. According to the driving demand of large curvature steering and reversing in the mining area, the forward and backward lateral control methods based on variable parameter adaption are proposed to meet the requirements of lateral precise control of all complex roads in the mining area. The unmanned driving system has been tested in different environments such as muddy roads and night environments in the Harwusu Open-pit Coal Mine. The results show that the unmanned driving system has the ability to operate in the mining area, can track accurately, avoid obstacles and perform tasks autonomously. The ground control system can control the start and shutdown of unmanned mine-used trucks, and can remotely control and drive the mine-used trucks if necessary. The various functions of the system are stable and reliable. The development trend of unmanned driving systems in mines is pointed out. ① For vehicular system, it is necessary to build systematic and product-oriented thinking at first, select the corresponding hardware in the form of products, and improve the adaptability of the hardware in the mining area. The perception system should focus on improving the target recognition ability in the complex and heavy dust environment so as to improve the detection redundancy. The control system should focus on improving the response speed of the wire-controlled actuator so as to improve the accuracy of the load quality acquisition. The decision-making system should focus on the guiding safety at first, and further consider the guiding efficiency and improve the system operation efficiency. ② For the ground system, it should fully integrate the existing achievements of the previous stage of digital mine and be compatible with the current mining area scheduling management system. It should focus on the development of mixed running and multi-vehicle cooperative management system, which has the efficiency and energy-saving control indexes in multi-vehicle scheduling. It is proposed that the ‘cloud control’ technology should be developed vigorously, and V2X (Vehicle-to-Everything) and other advanced methods should be used to improve the cooperative safety of unmanned driving systems.
-
Keywords:
- open-pit coal mine /
- mine-used truck /
- unmanned driving /
- intelligent mine /
- perception mine
-
-
期刊类型引用(37)
1. 马帅. 基于露天煤矿的智能无人驾驶技术应用与研究. 建筑机械. 2025(03): 25-29 . 百度学术
2. 顾治平,罗建华,朱晓光,张晓峰. 基于能量守恒的路面障碍物垂向激励侧翻研究. 汽车实用技术. 2025(06): 119-123 . 百度学术
3. 梁玉芳. 煤矿井下无人化无轨辅助运输路径规划技术研究. 煤炭工程. 2025(04): 88-92 . 百度学术
4. 李博,栾博钰,何玉东. 露天矿山无人驾驶运输效率评估方法. 露天采矿技术. 2024(01): 22-25 . 百度学术
5. 黄佳德,刘勇,邓穆坤,梅文庆. 露天矿场无人驾驶自卸车路径规划方法研究. 煤炭科学技术. 2024(08): 182-191 . 百度学术
6. 胡达涛,习泳,马宁. 无人驾驶电动自卸卡车在露天矿山的应用分析. 有色设备. 2024(04): 21-26 . 百度学术
7. 潘国宇,鲍久圣,胡德平,邹学耀,阴妍,王茂森,朱晨钟,张磊,杨瑞. 露天矿无人驾驶自卸车横-纵向协同控制研究. 工矿自动化. 2024(10): 68-79 . 本站查看
8. 郭梨,姚相杰,王轶凡,杨震. 基于STPA和FBN的无人矿卡系统失效风险分析. 采矿技术. 2024(06): 283-290 . 百度学术
9. 彭帆,胡云卿,刘勇,邓穆坤,罗羽,刘喜兵. 基于双层信赖域策略的矿用卡车非线性路径优化算法. 控制与信息技术. 2024(06): 1-11 . 百度学术
10. 李雄辉,郝波,李程,蒋学寨,田德强,陈小玄. 智慧矿山协同作业系统人机交互技术研究. 控制与信息技术. 2024(06): 34-42 . 百度学术
11. 邓超,龙腾,袁希文,李程. 矿卡自动驾驶场景全局栅格地图构建与更新方法研究. 控制与信息技术. 2024(06): 12-18 . 百度学术
12. 黄帅,王佳,黄佳德,黄鹏,吕亮. 无人驾驶矿卡局部避障路径规划算法研究. 控制与信息技术. 2024(06): 19-26 . 百度学术
13. 张乾,康远荣,黄佳德,袁希文. 基于预瞄和模糊规则的露天矿山运输车速度跟踪方法研究. 控制与信息技术. 2024(06): 27-33 . 百度学术
14. 熊焱飞,梅贵周,奚小虎,王亚飞,汪贵冬. 基于矿卡和挖机之间精准定向需求的双层轨迹规划技术研究. 采矿技术. 2023(01): 193-198 . 百度学术
15. 蒲德全,高振刚,李鹏洲. 矿井无轨辅助运输车辆无人驾驶研究现状分析. 现代矿业. 2023(06): 44-51 . 百度学术
16. 许联航,李曦,郭叙森,李静. 智慧矿山挡墙状态检测方法. 工矿自动化. 2023(08): 121-126 . 本站查看
17. 韩旭东. 基于Mapbox GL的无人矿卡监控系统设计与实现. 电脑知识与技术. 2023(23): 102-105 . 百度学术
18. 陈科,唐永岗,周李兵. 煤矿井下智能化辅助运输系统设计. 陕西煤炭. 2023(05): 82-85 . 百度学术
19. 李海滨. 矿用卡车无人驾驶系统安全体系设计. 工矿自动化. 2023(S1): 103-107 . 本站查看
20. 王星烨. 矿用卡车无人驾驶系统路径规划方案研究. 工矿自动化. 2023(S1): 99-102 . 本站查看
21. 梁栋. 露天矿山无人运输作业交通管理系统设计. 工矿自动化. 2023(S1): 113-115+118 . 本站查看
22. 顾同成,李冰,何心,惠翔禹,徐武彬. 面向智慧矿山的无人矿用卡车运动信息识别算法. 制造业自动化. 2023(10): 162-165 . 百度学术
23. 丁震,王鑫,刘思哲. 露天煤矿无人驾驶矿卡安全冗余设计与研究. 煤炭工程. 2023(S1): 23-29 . 百度学术
24. 秦沛霖,张传伟,周李兵,王健龙. 煤矿井下无人驾驶无轨胶轮车目标3D检测研究. 工矿自动化. 2022(02): 35-41 . 本站查看
25. 李振拯,丁恩杰,王戈琛. 基于LiDAR-IMU松耦合的同时定位与建图方法. 传感器与微系统. 2022(04): 36-39+43 . 百度学术
26. 向宙,黎胜根,肖正航,崔昌. 隧道施工场景无人驾驶系统研究. 建筑机械化. 2022(05): 15-18 . 百度学术
27. 周李兵. 煤矿井下无轨胶轮车无人驾驶系统研究. 工矿自动化. 2022(06): 36-48 . 本站查看
28. 田兴春,牟均发,任宏亮,何银涛,王坚刚. 基于工程车辆应急制动系统的应用研究. 时代汽车. 2022(18): 30-32 . 百度学术
29. 于德君,栗飞. 露天矿山运输无人驾驶系统作业分析. 露天采矿技术. 2022(05): 53-55+59 . 百度学术
30. 刘民强,高小强,陈钢. 露天矿山无人驾驶运输车辆轨迹防护方法. 工矿自动化. 2022(S1): 80-82+91 . 本站查看
31. 张乾,王斌,袁希文. 露天矿山运输车辆无人驾驶纵向精准停车控制策略研究. 控制与信息技术. 2022(05): 38-43 . 百度学术
32. 邓穆坤,刘勇,黄佳德,罗羽. 基于混合A~*算法的无人驾驶矿用卡车路径优化研究. 控制与信息技术. 2022(05): 60-67 . 百度学术
33. 张继卫. 新疆露天煤矿无人驾驶技术发展应用浅析. 工矿自动化. 2022(S2): 88-91+97 . 本站查看
34. 李程,张乾,王斌. 基于预测轨迹的无人驾驶矿用卡车主动防撞方法研究. 控制与信息技术. 2022(05): 17-22 . 百度学术
35. 贺石锋,吴伶锡,陈亦昕,詹杰. 矿用机车嵌入式多功能遥控系统的设计与实现. 广州航海学院学报. 2022(04): 50-54 . 百度学术
36. 高利敏,曹燕朝,周杨,梁思远. 露天矿山自动驾驶技术研究. 中国新技术新产品. 2021(15): 13-15 . 百度学术
37. 张宝卫,秦少华. 国家能源集团准能黑岱沟露天煤矿智能化建设实践与经验. 中国煤炭. 2021(S1): 166-171 . 百度学术
其他类型引用(17)
计量
- 文章访问数: 339
- HTML全文浏览量: 32
- PDF下载量: 68
- 被引次数: 54