留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进YOLOv8n的采掘工作面小目标检测方法

薛小勇 何新宇 姚超修 蒋泽 潘红光

薛小勇,何新宇,姚超修,等. 基于改进YOLOv8n的采掘工作面小目标检测方法[J]. 工矿自动化,2024,50(8):105-111.  doi: 10.13272/j.issn.1671-251x.2024060013
引用本文: 薛小勇,何新宇,姚超修,等. 基于改进YOLOv8n的采掘工作面小目标检测方法[J]. 工矿自动化,2024,50(8):105-111.  doi: 10.13272/j.issn.1671-251x.2024060013
XUE Xiaoyong, HE Xinyu, YAO Chaoxiu, et al. Small object detection method for mining face based on improved YOLOv8n[J]. Journal of Mine Automation,2024,50(8):105-111.  doi: 10.13272/j.issn.1671-251x.2024060013
Citation: XUE Xiaoyong, HE Xinyu, YAO Chaoxiu, et al. Small object detection method for mining face based on improved YOLOv8n[J]. Journal of Mine Automation,2024,50(8):105-111.  doi: 10.13272/j.issn.1671-251x.2024060013

基于改进YOLOv8n的采掘工作面小目标检测方法

doi: 10.13272/j.issn.1671-251x.2024060013
基金项目: 陕西省秦创原“科学家+工程师”队伍建设项目(2022KXJ-38)。
详细信息
    作者简介:

    薛小勇(1976—),男,陕西铜川人,工程师,主要从事煤矿灾害治理工作,E-mail:2534187585@qq.com

    通讯作者:

    潘红光(1983—),男,山东临沂人,副教授,博士,研究方向为模型预测控制、人工智能及其应用。E-mail: hongguangpan@163.com

  • 中图分类号: TD67

Small object detection method for mining face based on improved YOLOv8n

  • 摘要: 为有效检测和识别煤矿井下采掘工作面人员是否佩戴安全防护装置,针对井下光照条件差、安全防护装备目标尺寸小且颜色与背景相似等情况,提出了一种基于改进YOLOv8n的采掘工作面小目标检测方法。在YOLOv8n骨干网络C2f模块中融合动态蛇形卷积(DSConv),构建C2f−DSConv模块,以提高模型提取多尺度特征的能力;在Neck层引入极化自注意力(PSA)机制,以减少信息损失,提高特征表达能力;在Head层增设1个专门针对小目标的检测头,形成4检测头结构,以扩大模型检测范围。实验结果表明,改进YOLOv8n模型对井下人员及其所佩戴安全帽、矿灯、口罩、自救器检测的平均精度分别为98.3%,95.8%,89.9%,87.2%,90.8%,平均精度均值为92.4%,优于Faster R−CNN,YOLOv5s,YOLOv7,YOLOv8n模型,且检测速度达208帧/s,满足煤矿井下目标检测精度和实时性要求。

     

  • 图  1  改进YOLOv8n模型结构

    Figure  1.  Improved YOLOv8n model structure

    图  2  C2f−DSConv结构

    Figure  2.  C2f-DSConv structure

    图  3  PSA机制的并行布局模块

    Figure  3.  Parallel layout module of polarized self-attention (PSA)

    图  4  4检测头结构

    Figure  4.  Four detection heads structure

    图  5  5类标签标注结果

    Figure  5.  Five categories of label annotation

    图  6  不同目标检测模型检测结果对比

    Figure  6.  Comparison of detection results of different object detection models

    表  1  实验平台配置

    Table  1.   Experimental platform configuration

    配置 参数
    操作系统 Windows10
    CPU Intel Core i7−12700K
    GPU NVIDIA GeForce RTX 3060
    内存 32 GiB
    GPU加速工具 CUDA11.1
    下载: 导出CSV

    表  2  消融实验结果

    Table  2.   Ablation experiment results %

    YOLOv8n DSConv 检测头 PSA 精确率 召回率 mAP50
    × × × 86.9 85.9 89.1
    × × 87.4 89.3 89.7
    × 88.0 90.1 91.1
    89.3 91.3 92.4
    下载: 导出CSV

    表  3  不同目标检测模型对5种类别目标检测的AP对比

    Table  3.   Average precision (AP) comparison of detecting five categories by use of different object detection models %

    类别 Faster−
    RCNN
    YOLOv5s YOLOv7 YOLOv8n 改进YOLOv8n
    人员 84.2 92.9 94.2 97.7 98.3
    安全帽 80.7 90.1 91.7 93.7 95.8
    矿灯 68.7 76.6 76.3 79.8 89.9
    口罩 74.3 82.9 83.9 86.2 87.2
    自救器 73.3 81.7 81.4 85.1 90.8
    mAP50 79.2 85.6 86.3 89.1 92.4
    下载: 导出CSV

    表  4  不同目标检测模型的检测性能对比

    Table  4.   Comparison of detection performance of different object detection models

    模型 参数量/MiB GFLOPs mAP/% 检测速度/(帧·s−1
    Faster R−CNN 53.0 887.5 79.2 7
    YOLOv5s 7.2 16.0 85.6 59
    YOLOv7 36.9 104.7 86.3 142
    YOLOv8n 3.0 8.1 89.1 457
    改进YOLOv8n 3.4 13.3 92.4 208
    下载: 导出CSV
  • [1] 郝帅,杨晨禄,赵秋林,等. 基于双分支头部解耦和注意力机制的灾害环境人体检测[J]. 西安科技大学学报,2023,43(4):797-806.

    HAO Shuai,YANG Chenlu,ZHAO Qiulin,et al. Pedestrian detection method in disaster environment based on double branch decoupled head and attention mechanism[J]. Journal of Xi'an University of Science and Technology,2023,43(4):797-806.
    [2] 罗南超,郑伯川. 视频监控领域深度特征编码的行人检测算法[J]. 西安科技大学学报,2019,39(4):701-707.

    LUO Nanchao,ZHENG Bochuan. Deep feature coding for pedestrian detection in video surveillance[J]. Journal of Xi'an University of Science and Technology,2019,39(4):701-707.
    [3] 程德强,寇旗旗,江鹤,等. 全矿井智能视频分析关键技术综述[J]. 工矿自动化,2023,49(11):1-21.

    CHENG Deqiang,KOU Qiqi,JIANG He,et al. Overview of key technologies for mine-wide intelligent video analysis[J]. Journal of Mine Automation,2023,49(11):1-21.
    [4] 赵伟,王爽,赵东洋. 基于SD−YOLOv5s−4L的煤矿井下无人驾驶电机车多目标检测[J]. 工矿自动化,2023,49(11):121-128.

    ZHAO Wei,WANG Shuang,ZHAO Dongyang. Multi object detection of underground unmanned electric locomotives in coal mines based on SD-YOLOv5s-4L[J]. Journal of Mine Automation,2023,49(11):121-128.
    [5] REDMON J,DIVVALA S,GIRSHICK R,et al. You only look once:unified,real-time object detection[C]. The IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas,2016:779-788.
    [6] REDMON J,FARHADI A. YOLO9000:better,faster,stronger[C]. The IEEE Conference on Computer Vision and Pattern Recognition,Honolulu,2017:7263-7271.
    [7] REDMON J,FARHADI A. Yolov3:an incremental improvement[EB/OL]. [2024-04-23]. https://pjreddie.com/media/files/papers/YOLOv3.pdf.
    [8] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. Yolov4: optimal speed and accuracy of object detection [Z/OL]. [2024-05-23]. https://doi.org/10.48550/arXiv. 2004.10934.
    [9] REN Shaoqing,HE Kaiming, GIRSHICK R,et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149.
    [10] HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al. Deep residual learning for image recognition[C]. The IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas,2016:770-778.
    [11] HUANG Gao,LIU Zhuang,VAN DER MAATEN L,et al. Densely connected convolutional networks[C]. The IEEE Conference on Computer Vision and Pattern Recognition,Honolulu,2017:4700-4708.
    [12] HOWARD A G,ZHU Menglong,CHEN Bo,et al. Mobilenets:efficient convolutional neural networks for mobile vision applications[Z/OL]. [2024-04-23]. https://arxiv.org/pdf/1704.04861.
    [13] 崔铁军,王凌霄. YOLOv4目标检测算法在煤矿工人口罩佩戴监测工作中的应用研究[J]. 中国安全生产科学技术,2021,17(10):66-71.

    CUI Tiejun,WANG Lingxiao. Research on application of YOLOv4 object detection algorithm in monitoring on masks wearing of coal miners[J]. Journal of Safety Science and Technology,2021,17(10):66-71.
    [14] 李熙尉,孙志鹏,王鹏,等. 基于YOLOv5s改进的井下人员和安全帽检测算法研究[J]. 煤,2023,32(3):22-25. doi: 10.3969/j.issn.1005-2798.2023.03.006

    LI Xiwei,SUN Zhipeng,WANG Peng,et al. Research on underground personnel and safety helmet detection algorithm based on YOLOv5s improvement[J]. Coal,2023,32(3):22-25. doi: 10.3969/j.issn.1005-2798.2023.03.006
    [15] 曹帅,董立红,邓凡,等. 基于YOLOv7−SE的煤矿井下场景小目标检测方法[J]. 工矿自动化,2024,50(3):35-41.

    CAO Shuai,DONG Lihong,DENG Fan,et al. A small object detection method for coal mine underground scene based on YOLOv7-SE[J]. Journal of Mine Automation,2024,50(3):35-41.
    [16] 王科平,连凯海,杨艺,等. 基于改进YOLOv4的综采工作面目标检测[J]. 工矿自动化,2023,49(2):70-76.

    WANG Keping,LIAN Kaihai,YANG Yi,et al. Target detection of the fully mechanized working face based on improved YOLOv4[J]. Journal of Mine Automation,2023,49(2):70-76.
    [17] 顾清华,何鑫鑫,王倩,等. 基于改进YOLOv5的煤矿井下暗环境矿工安全穿戴智能识别[J]. 矿业研究与开发,2024,44(3):201-208.

    GU Qinghua,HE Xinxin,WANG Qian,et al. Research on intelligent recognition of safety wearing of miners in dark enviroment of coal mine based on improved YOLOv5[J]. Mining Research and Development,2024,44(3):201-208.
    [18] 寇发荣,肖伟,何海洋,等. 基于改进YOLOv5的煤矿井下目标检测研究[J]. 电子与信息学报,2023,45(7):2642-2649. doi: 10.11999/JEIT220725

    KOU Farong,XIAO Wei,HE Haiyang,et al. Research on target detection in underground coal mines based on improved YOLOv5[J]. Journal of Electronics & Information Technology,2023,45(7):2642-2649. doi: 10.11999/JEIT220725
    [19] GE Zheng,LIU Songtao,WANG Feng,et al. Yolox:Exceeding YOLO series in 2021[Z/OL]. [2024-04-23]. https://arxiv.org/pdf/2107.08430.
    [20] YU F,KOLTUN V. Multi-scale context aggregation by dilated convolutions[Z/OL]. [2024-04-23]. https://arxiv.org/pdf/1511.07122.
    [21] DAI Jifeng,QI Haozhi,XIONG Yuwen,et al. Deformable convolutional networks[C]. The IEEE International Conference on Computer Vision,Venice,2017:764-773.
    [22] QI Yaolei,HE Yuting,QI Xiaoming,et al. Dynamic snake convolution based on topological geometric constraints for tubular structure segmentation[C]. The IEEE/CVF International Conference on Computer Vision,Paris,2023:6070-6079.
    [23] LIU Huajun,LIU Fuqiang,FAN Xinyi,et al. Polarized self-attention:towards high-quality pixel-wise regression[Z/OL]. [2024-04-23]. https://arxiv.org/pdf/2107.00782.
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  53
  • HTML全文浏览量:  29
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-03
  • 修回日期:  2024-08-16
  • 网络出版日期:  2024-08-02

目录

    /

    返回文章
    返回