留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

数字孪生在煤矿电网中的应用研究

赵建文 孟旭辉

赵建文,孟旭辉. 数字孪生在煤矿电网中的应用研究[J]. 工矿自动化,2023,49(2):38-46.  doi: 10.13272/j.issn.1671-251x.2022040019
引用本文: 赵建文,孟旭辉. 数字孪生在煤矿电网中的应用研究[J]. 工矿自动化,2023,49(2):38-46.  doi: 10.13272/j.issn.1671-251x.2022040019
ZHAO Jianwen, MENG Xuhui. Research on the application of digital twin in coal mine power grid[J]. Journal of Mine Automation,2023,49(2):38-46.  doi: 10.13272/j.issn.1671-251x.2022040019
Citation: ZHAO Jianwen, MENG Xuhui. Research on the application of digital twin in coal mine power grid[J]. Journal of Mine Automation,2023,49(2):38-46.  doi: 10.13272/j.issn.1671-251x.2022040019

数字孪生在煤矿电网中的应用研究

doi: 10.13272/j.issn.1671-251x.2022040019
基金项目: 陕西省自然科学基础研究计划项目(2023-JC-YB-308);西安市科技计划项目(GXYD13.10)。
详细信息
    作者简介:

    赵建文(1973—),男,陕西西安人,教授,博士,研究方向为电力网安全运行与保护,E-mail:xkdzhaojw@163.com

    通讯作者:

    孟旭辉(1998—),男,安徽蚌埠人,硕士研究生,研究方向为配电网的继电保护,E-mail:278019714@qq.com

  • 中图分类号: TD67

Research on the application of digital twin in coal mine power grid

  • 摘要: 立足于数字孪生的基本概念和内涵,分析了数字孪生技术在煤矿电网中的应用优势:以同步实体运行状态、数字化模拟运行 2 种手段来辅助煤矿电网的运行管理,具有数据驱动、实时更新、同步反馈的特点。提出了由煤矿电网物理实体层、煤矿电网数字孪生模型层、用户管理服务层、数据交流层组成的煤矿电网数字孪生体系基本架构,从物理实体、数字孪生模型2个方面探索了煤矿电网数字孪生体系运行模式。介绍了建立煤矿电网数字孪生体系的关键技术:煤矿电网数字孪生模型构建、智能数据采集、基于5G的智能通信、数字孪生智能数据库、数字孪生设备智能管理平台。给出了数字孪生技术在煤矿电网中的具体应用场景,包括煤矿井下电气设备状态评估、煤矿电网故障定位和保护、煤矿电网智能监控、煤矿井下线路智能巡检。将数字孪生技术应用在煤矿电网中,对煤矿电网的状态和运行进行动态仿真建模,一方面可以满足当今规模庞大的煤矿电网相对地面电网更高的运行要求,保障煤矿生产安全性,另一方面可推进煤矿电网的智能化进程,实现数据资源高效合理利用。

     

  • 图  1  煤矿电网数字孪生体系基本架构

    Figure  1.  Basic architecture of digital twin system of coal mine power grid

    图  2  煤矿电网数字孪生体系的运行模式

    Figure  2.  Operation mode of digital twin system of coal mine power grid

    图  3  煤矿井下电气设备状态评估流程

    Figure  3.  Condition assessment flow of electrical equipment in underground coal mine

    图  4  煤矿电网故障定位和保护流程

    Figure  4.  Fault location and protection flow of coal mine power grid

    图  5  煤矿井下线路智能巡检技术路线

    Figure  5.  Intelligent inspection technology route of coal mine underground line

  • [1] 贺兴,艾芊,朱天怡,等. 数字孪生在电力系统应用中的机遇和挑战[J]. 电网技术,2020,44(6):2009-2019.

    HE Xing,AI Qian,ZHU Tianyi,et al. Opportunities and challenges of the digital twin in power system applications[J]. Power System Technology,2020,44(6):2009-2019.
    [2] 庞宇. 行星齿轮箱数字孪生体动力学仿真与故障诊断研究[D]. 太原: 中北大学, 2020.

    PANG Yu. Simulation study on dynamics and fault diagnosis of digital twin in planetary gearbox[D]. Taiyuan: North University of China, 2020.
    [3] 纪志伟. 基于数字孪生的泛在电力物联网模型研究[J]. 电力学报,2020,35(3):274-279.

    JI Zhiwei. Research on ubiquitous power Internet of things model based on digital twinning[J]. Journal of Electric Power,2020,35(3):274-279.
    [4] 王浩,许海伟,杜勇,等. 基于数字孪生模型的GIS筒体关键部件温变行为研究[J]. 高电压技术,2021,47(5):1584-1594.

    WANG Hao,XU Haiwei,DU Yong,et al. Research on temperature change behavior of key components of GIS barrel based on digital twin model[J]. High Voltage Engineering,2021,47(5):1584-1594.
    [5] 张帆,葛世荣,李闯. 智慧矿山数字孪生技术研究综述[J]. 煤炭科学技术,2020,48(7):168-176. doi: 10.13199/j.cnki.cst.2020.07.017

    ZHANG Fan,GE Shirong,LI Chuang. Research summary on digital twin technology for smart mines[J]. Coal Science and Technology,2020,48(7):168-176. doi: 10.13199/j.cnki.cst.2020.07.017
    [6] 夏玲,姜媛媛,张杰,等. 基于数字孪生的Buck电路故障诊断方法[J]. 工矿自动化,2021,47(2):88-92,115. doi: 10.13272/j.issn.1671-251x.2020070063

    XIA Ling,JIANG Yuanyuan,ZHANG Jie,et al. Buck circuit fault diagnosis method based on digital twin[J]. Industry and Mine Automation,2021,47(2):88-92,115. doi: 10.13272/j.issn.1671-251x.2020070063
    [7] 程晓涵,李宗吾,谢秉沁,等. 基于MEMS技术的矿用无线传感采集系统设计[J]. 煤炭工程,2022,54(3):26-32.

    CHENG Xiaohan,LI Zongwu,XIE Bingqin,et al. MEMS technology-based mine wireless sensor acquisition system[J]. Coal Engineering,2022,54(3):26-32.
    [8] 王怀秀,仇帅,朱国维,等. 基于MEMS与LwIP的煤矿三分量地震数据采集系统[J]. 煤田地质与勘探,2021,49(4):8-14. doi: 10.3969/j.issn.1001-1986.2021.04.002

    WANG Huaixiu,QIU Shuai,ZHU Guowei,et al. Three-component seismic data acquisition system of coal mine based on MEMS and LwIP[J]. Coal Geology & Exploration,2021,49(4):8-14. doi: 10.3969/j.issn.1001-1986.2021.04.002
    [9] 范海东. 基于数字孪生的智能电厂体系架构及系统部署研究[J]. 智能科学与技术学报,2019,1(3):241-248. doi: 10.11959/j.issn.2096-6652.201930

    FAN Haidong. Research on architecture and system deployment of intelligent power plant based on digital twin[J]. Chinese Journal of Intelligent Science and Technology,2019,1(3):241-248. doi: 10.11959/j.issn.2096-6652.201930
    [10] 邹东,冯剑冰. 数字孪生技术在城市轨道交通供电系统中的应用场景分析[J]. 城市轨道交通研究,2021,24(3):158-162,165. doi: 10.16037/j.1007-869x.2021.03.036

    ZOU Dong,FENG Jianbing. Application scenario analysis of digital twin technology in urban rail transit power supply system[J]. Urban Mass Transit,2021,24(3):158-162,165. doi: 10.16037/j.1007-869x.2021.03.036
    [11] JAIN P,POON J,SINGH J P,et al. A digital twin approach for fault diagnosis in distributed photovoltaic systems[J]. IEEE Transactions on Power Electronics,2020,35(1):940-956. doi: 10.1109/TPEL.2019.2911594
    [12] 韩将星. 6G时代数字孪生在无线电监测站的应用研究[J]. 通信技术,2021,54(2):352-362.

    HAN Jiangxing. Digital twin application in radio monitoring stations in 6G era[J]. Communications Technology,2021,54(2):352-362.
    [13] 苗可彬. 基于LoRa技术的矿用无线一氧化碳传感器设计[J]. 电子设计工程,2021,29(14):95-100. doi: 10.14022/j.issn1674-6236.2021.14.021

    MIAO Kebin. Design of wireless carbon monoxide sensor for mine based on LoRa technology[J]. Electronic Design Engineering,2021,29(14):95-100. doi: 10.14022/j.issn1674-6236.2021.14.021
    [14] 潘晓博. 基于LoRa的低功耗瓦斯浓度分布式监测系统设计[J]. 工矿自动化,2021,47(6):103-108. doi: 10.13272/j.issn.1671-251x.2021030052

    PAN Xiaobo. Design of low-power distributed gas concentration monitoring system based on LoRa[J]. Industry and MineAutomation,2021,47(6):103-108. doi: 10.13272/j.issn.1671-251x.2021030052
    [15] 孙学波,李志福,王元杰,等. 基于5G通信网络的高精度无线微震监测技术研究[J]. 矿业安全与环保,2022,49(2):83-90. doi: 10.19835/j.issn.1008-4495.2022.02.015

    SUN Xuebo,LI Zhifu,WANG Yuanjie,et al. Research on high-precision wireless microseismic monitoring technology based on 5G communication network[J]. Mining Safety & Environmental Protection,2022,49(2):83-90. doi: 10.19835/j.issn.1008-4495.2022.02.015
    [16] 吕晟,唐小平,汤雪鹏,等. 基于多数据融合的智能电网运检信息平台设计[J]. 电子设计工程,2021,29(10):120-124. doi: 10.14022/j.issn1674-6236.2021.10.026

    LYU Sheng,TANG Xiaoping,TANG Xuepeng,et al. Design of intelligent power grid operation and inspection information platform based on multi-data fusion[J]. Electronic Design Engineering,2021,29(10):120-124. doi: 10.14022/j.issn1674-6236.2021.10.026
    [17] 胡伟飞,方健豪,刘飞香,等. 基于数字孪生的掘锚一体机实时状态映射[J]. 湖南大学学报(自然科学版),2022,49(2):1-12. doi: 10.55463/issn.1674-2974.49.2.1

    HU Weifei,FANG Jianhao,LIU Feixiang,et al. Real-time state mirror-mapping for driving and bolting integration equipment based on digital twin[J]. Journal of Hunan University(Natural Sciences),2022,49(2):1-12. doi: 10.55463/issn.1674-2974.49.2.1
    [18] 郑忠斌,王朝栋,蔡佳浩. NB-IoT的技术优势及在电网中的应用研究[J]. 通信技术,2020,53(7):1786-1793. doi: 10.3969/j.issn.1002-0802.2020.07.035

    ZHENG Zhongbin,WANG Chaodong,CAI Jiahao. Technical advantage of NB-IoT and its application in power grid[J]. Communications Technology,2020,53(7):1786-1793. doi: 10.3969/j.issn.1002-0802.2020.07.035
    [19] 殷鹏, 肖开泰, 肖长亮, 等. 煤矿安全监控系统数据采集方式[J]. 煤矿安全, 2019, 50(8): 104-106.

    YIN Peng, XIAO Kaitai, XIAO Changliang, et al. Data acquisition method of coal mine safety monitoring system[J]Safety in Coal Mines, 2019, 50(8): 104-106.
    [20] 周海坤. 高并发煤矿安全监控数据采集系统的设计[J]. 煤矿安全,2018,49(6):85-87,91. doi: 10.13347/j.cnki.mkaq.2018.06.022

    ZHOU Haikun. Design of data acquisition system for high concurrent coal mine safety monitoring[J]. Safety in Coal Mines,2018,49(6):85-87,91. doi: 10.13347/j.cnki.mkaq.2018.06.022
    [21] 李军,赵军. MEMS传感器的发展及其在煤矿井下的应用研究[J]. 煤炭技术,2014,33(7):238-240. doi: 10.13301/j.cnki.ct.2014.07.089

    LI Jun,ZHAO Jun. Development and application of MEMS sensor under coal mine[J]. Coal Technology,2014,33(7):238-240. doi: 10.13301/j.cnki.ct.2014.07.089
    [22] 赵悦,兰英,屈贤. 基于 MEMS传感器的煤矿井下人员定位系统设计[J]. 工矿自动化,2018,44(8):87-91.

    ZHAO Yue,LAN Ying,QU Xian. Design of personnel positioning system in coal mine underground based on MEMS sensor[J]. Industry and Mine Automation,2018,44(8):87-91.
    [23] 张新. LoRa技术及其在煤矿中的应用分析[J]. 煤炭工程,2019,51(3):79-82.

    ZHANG Xin. LoRa technology and its application analysis in coal mine[J]. Coal Engineering,2019,51(3):79-82.
    [24] 薛光辉,赵贺,孙宗正. 基于LoRa技术的矿用无线复合传感器设计与实现[J]. 煤炭工程,2020,52(4):166-170.

    XUE Guanghui,ZHAO He,SUN Zongzheng. Design and implementation of mine wireless composite sensor based on LoRa[J]. Coal Engineering,2020,52(4):166-170.
    [25] LARSSON E G,EDFORS O,TUFVESSON F,et al. Massive MIMO for next generation wireless systems[J]. IEEE Communications Magazine,2014,52(2):186-195. doi: 10.1109/MCOM.2014.6736761
    [26] GAO Hongyuan,SU Yumeng,ZHANG Shibo,et al. Joint antenna selection and power allocation for secure co-time co-frequency full-duplex massive MIMO systems[J]. IEEE Transactions on Vehicular Technology,2021,70(1):655-665.
    [27] GAO Xinyu,DAI Linglong,CHEN Zhijie,et al. Near-optimal beam selection for beamspace mmWave massive MIMO systems[J]. IEEE Communications Letters,2016,20(5):1054-1057.
    [28] ZHOU Tao,CHEN Guichao,WANG Chengxiang,et al. Performance analysis and power allocation of mixed-ADC multi-cell millimeter-wave massive MIMO systems with antenna selection[J]. Frontiers of Information Technology & Electronic Engineering,2021,22(4):571-585.
    [29] 王国法,赵国瑞,胡亚辉. 5G 技术在煤矿智能化中的应用展望[J]. 煤炭学报,2020,45(1):16-23.

    WANG Guofa,ZHAO Guorui,HU Yahui. Application prospect of 5G technology in coal mine intelligence[J]. Journal of China Coal Society,2020,45(1):16-23.
    [30] 顾义东,孟玮. 煤矿5G无线通信系统建设构想[J]. 工矿自动化,2021,47(10):1-6,13. doi: 10.13272/j.issn.1671-251x.17850

    GU Yidong,MENG Wei. Coal mine 5G wireless communication system construction concept[J]. Industry and Mine Automation,2021,47(10):1-6,13. doi: 10.13272/j.issn.1671-251x.17850
    [31] 刘扬,刘建功,王毅颖,等. 煤矿坚强智能电网建设理论与技术探讨[J]. 煤炭学报,2020,45(6):2296-2307. doi: 10.13225/j.cnki.jccs.ZN20.0334

    LIU Yang,LIU Jiangong,WANG Yiying,et al. Discussion on theory and technology of building robust intelligent power grid in coal mine of China[J]. Journal of China Coal Society,2020,45(6):2296-2307. doi: 10.13225/j.cnki.jccs.ZN20.0334
    [32] 赵涵. 基于区块链的智能矿山数据共享方案研究[J]. 工矿自动化,2021,47(增刊2):45-48.

    ZHAO Han. Research on smart mine data sharing scheme based on blockchain[J]. Industry and Mine Automation,2021,47(S2):45-48.
    [33] 秦晓伟,王立兵,汪磊,等. 区块链技术在矿山物联网中的应用研究[J]. 工矿自动化,2020,46(3):21-26. doi: 10.13272/j.issn.1671-251x.17542

    QIN Xiaowei,WANG Libing,WANG Lei,et al. Research on application of blockchain technology in mine Internet of things[J]. Industry and Mine Automation,2020,46(3):21-26. doi: 10.13272/j.issn.1671-251x.17542
    [34] 谭靓洁,李永飞,吴琼. 基于区块链的煤矿安监云数据安全访问模型研究[J]. 工矿自动化,2022,48(5):93-99. doi: 10.13272/j.issn.1671-251x.2022030023

    TAN Liangjie,LI Yongfei,WU Qiong. Research on security access model of coal mine safety supervision cloud data based on blockchain[J]. Journal of Mine Automation,2022,48(5):93-99. doi: 10.13272/j.issn.1671-251x.2022030023
    [35] 朱珂,张莹,李瑞丽. 全息课堂:基于数字孪生的可视化三维学习空间新探[J]. 远程教育杂志,2020,38(4):38-47. doi: 10.15881/j.cnki.cn33-1304/g4.2020.04.004

    ZHU Ke,ZHANG Ying,LI Ruili. Holographic classroom:A new exploration of visualized 3D learning space based on digital twin[J]. Journal of Distance Education,2020,38(4):38-47. doi: 10.15881/j.cnki.cn33-1304/g4.2020.04.004
    [36] 李梅,孙振明,吕平洋,等. 煤矿综采工作面多角色虚拟演练平台关键技术研究[J]. 煤炭科学技术,2018,46(1):156-161,223. doi: 10.13199/j.cnki.cst.2018.01.022

    LI Mei,SUN Zhenming,LYU Pingyang,et al. Study on key technology of multiplayer virtual reality training platform for fully-mechanized coal mining face[J]. Coal Science and Technology,2018,46(1):156-161,223. doi: 10.13199/j.cnki.cst.2018.01.022
    [37] 李新虎. 基于大数据挖掘的矿井旋转机械状态评估系统[J]. 电子器件,2021,44(2):434-438. doi: 10.3969/j.issn.1005-9490.2021.02.032

    LI Xinhu. State evaluation system of mine rotating machinery based on big data mining[J]. Chinese Journal of Electron Devices,2021,44(2):434-438. doi: 10.3969/j.issn.1005-9490.2021.02.032
    [38] 何俊峰,肖慧明. 矿井提升机健康管理系统研究[J]. 制造业自动化,2020,42(6):4-7,38. doi: 10.3969/j.issn.1009-0134.2020.06.002

    HE Junfeng,XIAO Huiming. Reserch on system of health management for mine hoist[J]. Manufacturing Automation,2020,42(6):4-7,38. doi: 10.3969/j.issn.1009-0134.2020.06.002
    [39] 齐波,张鹏,张书琦,等. 数字孪生技术在输变电设备状态评估中的应用现状与发展展望[J]. 高电压技术,2021,47(5):1522-1538. doi: 10.13336/j.1003-6520.hve.20210093

    QI Bo,ZHANG Peng,ZHANG Shuqi,et al. Application status and development prospects of digital twin technology in condition assessment of power transmission and transformation equipment[J]. High Voltage Engineering,2021,47(5):1522-1538. doi: 10.13336/j.1003-6520.hve.20210093
    [40] 王玉梅, 张家康. 基于卷积神经网络多判据融合的井下电网故障选线方法[J/OL]. 电源学报: 1-12[2022-06-15]. http://kns.cnki.net/kcms/detail/12.1420.TM.20210826.1712.010.html.

    WANG Yumei, ZHANG Jiakang. Fault line selection method for mine power grid based on fusion of multiple criteria of convolutional neural network[J/OL]. Journal of Power Supply: 1-12[2022-06-15]. http://kns.cnki.net/kcms/detail/12.1420.TM.20210826.1712.010.html.
    [41] 倪少军,李双良,匡欣欣,等. 面向煤矿供电的智能分布式防越级保护系统[J]. 工矿自动化,2021,47(增刊1):78-80,87.

    NI Shaojun,LI Shuangliang,KUANG Xinxin,et al. Intelligent distributed anti-override protection system for coal mine power supply[J]. Industry and Mine Automation,2021,47(S1):78-80,87.
    [42] 张文瑞. 煤矿供电防越级跳闸监控系统[J]. 工矿自动化,2018,44(9):98-101. doi: 10.13272/j.issn.1671-251x.17343

    ZHANG Wenrui. Anti-override trip monitoring system of coal mine power supply[J]. Industry and Mine Automation,2018,44(9):98-101. doi: 10.13272/j.issn.1671-251x.17343
    [43] 刘波. 煤矿智能化供电系统的防越级跳闸与远程漏试应用[J]. 工矿自动化,2021,47(增刊1):85-87.

    LIU Bo. Application of anti override trip and remote leakage test in coal mine intelligent power supply system[J]. Industry and Mine Automation,2021,47(S1):85-87.
    [44] 汪丛笑. 煤矿安全监控系统智能化现状及发展对策[J]. 工矿自动化,2017,43(11):5-10. doi: 10.13272/j.issn.1671-251x.2017.11.002

    WANG Congxiao. Present situation and development countermeasures of coal mine safety monitoring and control system intelligentization[J]. Industry and Mine Automation,2017,43(11):5-10. doi: 10.13272/j.issn.1671-251x.2017.11.002
    [45] 闫兆振. 煤矿安全监控多系统融合平台[J]. 工矿自动化,2017,43(2):11-14. doi: 10.13272/j.issn.1671-251x.2017.02.003

    YAN Zhaozhen. Multi-system fusion platform for coal mine safety monitoring and control[J]. Industry and Mine Automation,2017,43(2):11-14. doi: 10.13272/j.issn.1671-251x.2017.02.003
    [46] 张朝晖,成鑫,牛猛,等. 无人机在煤矿电力系统的应用与研究[J]. 科技资讯,2021,19(11):84-86. doi: 10.16661/j.cnki.1672-3791.2012-5042-0863

    ZHANG Zhaohui,CHENG Xin,NIU Meng,et al. Application and research of UAV in coal mine power system[J]. Science & Technology Information,2021,19(11):84-86. doi: 10.16661/j.cnki.1672-3791.2012-5042-0863
    [47] 侯刚. 煤矿无人机智能系统设计与实现[J]. 煤炭工程,2021,53(2):19-23.

    HOU Gang. Design and realization of intelligent system of coal mine UAV[J]. Coal Engineering,2021,53(2):19-23.
    [48] 王妙云. 煤矿井下四旋翼无人机虚拟远程操控关键技术研究[D]. 西安: 西安科技大学, 2020.

    WANG Miaoyun. Key technologies of virtual remote control of quadcopter UAV in underground coal mine[D]. Xi'an: Xi'an University of Science and Technology, 2020.
    [49] 袁智勇,肖泽坤,于力,等. 智能电网大数据研究综述[J]. 广东电力,2021,34(1):1-12. doi: 10.3969/j.issn.1007-290X.2021.001.001

    YUAN Zhiyong,XIAO Zekun,YU Li,et al. Research review of big data for smart grid[J]. Guangdong Electric Power,2021,34(1):1-12. doi: 10.3969/j.issn.1007-290X.2021.001.001
  • 加载中
图(5)
计量
  • 文章访问数:  309
  • HTML全文浏览量:  50
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-08
  • 修回日期:  2023-02-10
  • 网络出版日期:  2022-09-19

目录

    /

    返回文章
    返回