留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

数字孪生驱动的巷道自动成形截割虚拟调试方法研究

张旭辉 刘彦徽 杨文娟 张超 杜昱阳 杨骏豪 杨雯雨

张旭辉,刘彦徽,杨文娟,等. 数字孪生驱动的巷道自动成形截割虚拟调试方法研究[J]. 工矿自动化,2024,50(7):1-11, 31.  doi: 10.13272/j.issn.1671-251x.18186
引用本文: 张旭辉,刘彦徽,杨文娟,等. 数字孪生驱动的巷道自动成形截割虚拟调试方法研究[J]. 工矿自动化,2024,50(7):1-11, 31.  doi: 10.13272/j.issn.1671-251x.18186
ZHANG Xuhui, LIU Yanhui, YANG Wenjuan, et al. Research on a digital twin driven virtual debugging method for roadway automatic forming cutting[J]. Journal of Mine Automation,2024,50(7):1-11, 31.  doi: 10.13272/j.issn.1671-251x.18186
Citation: ZHANG Xuhui, LIU Yanhui, YANG Wenjuan, et al. Research on a digital twin driven virtual debugging method for roadway automatic forming cutting[J]. Journal of Mine Automation,2024,50(7):1-11, 31.  doi: 10.13272/j.issn.1671-251x.18186

数字孪生驱动的巷道自动成形截割虚拟调试方法研究

doi: 10.13272/j.issn.1671-251x.18186
基金项目: 国家自然科学基金青年项目(52104166)。
详细信息
    作者简介:

    张旭辉(1972—),男,陕西凤翔人,教授,博士,研究方向为煤矿机电设备智能检测与控制,E-mail:zhangxh@xust.edu.cn

    通讯作者:

    杨文娟(1989—),女,山西文水人,副教授,研究方向为智能检测与控制,E-mail: yangwenjuan@xust.edu.cn

  • 中图分类号: TD67

Research on a digital twin driven virtual debugging method for roadway automatic forming cutting

  • 摘要: 针对目前巷道自动成形截割控制调试周期长、调试成本大、安全风险大、成形质量难以评价等问题,提出了一种数字孪生驱动的巷道自动成形截割虚拟调试方法。采用基于即时外观建图(RTAP−MAP)技术重建巷道三维环境,构建掘进机控制系统模型,形成虚拟调试环境,并利用虚拟传感器技术实现物理空间到虚拟环境状态的精准映射。针对难以量化评估断面成形质量的问题,确立了巷道自动成形截割性能评价方法,以断面成形截割控制过程在数据传输中心的记录为基础,主要对断面成形精度、截割效率与油缸开关次数、硬岩切割调整、超挖欠挖4个评价指标进行计算,从而为深度学习算法的迭代优化提供精准反馈信号,并提出了一种融合强化学习的自动截割控制策略,以提高自动化作业的适应性和精确度。为验证该虚拟调试方法的有效性和准确性,搭建了掘进机自动控制实验平台,并将虚拟调试系统应用于掘进巷道成形截割自动控制程序中。虚拟仿真结果表明:① 被调试软件在控制关键点位处的XYZ轴定位误差的最大值分别为74.8,72.93,123.67 mm,说明虚拟调试方法的定位精度达到性能要求。② 虚拟样机与物理样机轨迹基本一致,说明该调试方法实现了对物理空间的映射。应用结果表明:① 强化学习控制器在虚拟掘进测试中适应了复杂环境,将虚拟传感器输入有效转换为精准控制指令,验证了模拟−现实迁移训练的可行性。通过处理掘进精度和避免超欠挖的实时反馈,控制器学习并优化了策略。② 优化后的断面成形截割控制性能得到了提升,根据数据库中控制量时间戳的记录,用时126 s,较优化前耗时减少了8 s。③ 优化后截割部末端轨迹跟踪最大误差为6.0 mm,较优化前降低了0.3 mm,避免了截割轨迹抖动导致的欠挖,同时使得轨迹和断面更加平滑。

     

  • 图  1  巷道自动成形截割虚拟调试系统总体方案

    Figure  1.  Overall scheme of virtual debugging system for roadway automatic forming cutting

    图  2  虚拟巷道模型

    Figure  2.  Virtual roadway model

    图  3  掘进机机身及截割部坐标系

    Figure  3.  Coordinate system of roadheader body and cutting unit

    图  4  虚拟相机定位

    Figure  4.  Virtual camera positioning

    图  5  二次强化学习训练方法

    Figure  5.  Secondary reinforcement learning training method

    图  6  截割性能优化二次强化学习结果

    Figure  6.  Cutting performance optimization and secondary reinforcement learning results

    图  7  虚实同动效果

    Figure  7.  Effect of moving together with the virtual reality

    图  8  数据存储与俯仰角虚实数据对比

    Figure  8.  Comparison of data storage and pitch angle virtual and real data

    图  9  巷道断面成形监测人机界面

    Figure  9.  Human machine interface for roadway section forming monitoring

    图  10  单次断面成形PPO模型优化

    Figure  10.  Optimization of proximal policy optimization model for single section forming

    图  11  截割性能优化效果

    Figure  11.  Optimization effect of cutting performance

    图  12  优化后截割头位置误差

    Figure  12.  Position error of cutting head after optimization

    表  1  截割部连杆参数

    Table  1.   Connecting rod parameters of cutting unit

    连杆 ${d_i}$/mm ${a_{i - 1}}$/mm ${\alpha _{i - 1}}$/(°) ${\theta _i}$/(°)
    01 0 0 0 θ1(0±45)
    12 0 c1 −90 θ2(−90±45)
    23 c2 55 −90 0
    34 c3 0 0 0
    下载: 导出CSV

    表  2  基于虚拟传感器的机身定位结果

    Table  2.   Body positioning results based on virtual sensor (mm,mm,mm)

    序号 虚拟传感器定位坐标 虚拟空间坐标 误差
    1 (840.41, 2132.92, 5806.32 (809.08, 2060, 5930 (31.35, 72.93, −123.67)
    2 (981.51, 2032.57, 6125.83 1058.33, 2060, 6112 (−76.76, −27.31, 13.78)
    3 (926.91, 2005.23, 6432.2 (933.58, 2060, 6423 (−6.68, −54.73, 9.17)
    4 1723.83, 1629.84, 7449.22 1798.61, 1660, 7498.1 (−74.8, −30.18, −48.84)
    5 1908.67, 1471.14, 7980.21 1915.45, 1510, 7930 (−6.75, −38.87, 50.2)
    下载: 导出CSV
  • [1] 王国法,赵国瑞,任怀伟. 智慧煤矿与智能化开采关键核心技术分析[J]. 煤炭学报,2019,44(1):34-41.

    WANG Guofa,ZHAO Guorui,REN Huaiwei. Analysis on key technologies of intelligent coal mine and intelligent mining[J]. Journal of China Coal Society,2019,44(1):34-41.
    [2] 王虹,王步康,张小峰,等. 煤矿智能快掘关键技术与工程实践[J]. 煤炭学报,2021,46(7):2068-2083.

    WANG Hong,WANG Bukang,ZHANG Xiaofeng,et al. Key technology and engineering practice of intelligent rapid heading in coal mine[J]. Journal of China Coal Society,2021,46(7):2068-2083.
    [3] 王国法,张建中,薛国华,等. 煤矿回采工作面智能地质保障技术进展与思考[J]. 煤田地质与勘探,2023,51(2):12-26.

    WANG Guofa,ZHANG Jianzhong,XUE Guohua,et al. Progress and reflection of intelligent geological guarantee technology in coal mining face[J]. Coal Geology & Exploration,2023,51(2):12-26.
    [4] 王妙云,张旭辉,马宏伟,等. 远程控制综采设备碰撞检测与预警方法[J]. 煤炭科学技术,2021,49(9):110-116.

    WANG Miaoyun,ZHANG Xuhui,MA Hongwei,et al. Collision detection and pre-warning method for remotely controlled fully-mechanized mining equipment[J]. Coal Science and Technology,2021,49(9):110-116.
    [5] 李娟莉,沈宏达,谢嘉成,等. 基于数字孪生的综采工作面工业虚拟服务系统[J]. 计算机集成制造系统,2021,27(2):445-455.

    LI Juanli,SHEN Hongda,XIE Jiacheng,et al. Development of industrial virtual service system for fully mechanized mining face based on digital twin[J]. Computer Integrated Manufacturing Systems,2021,27(2):445-455.
    [6] 张旭辉,吕欣媛,王甜,等. 数字孪生驱动的掘进机器人决策控制系统研究[J]. 煤炭科学技术,2022,50(7):36-49.

    ZHANG Xuhui,LYU Xinyuan,WANG Tian,et al. Research on decision control system of tunneling robot driven by digital twin[J]. Coal Science and Technology,2022,50(7):36-49.
    [7] 毛清华,陈磊,闫昱州,等. 煤矿悬臂式掘进机截割头位置精确控制方法[J]. 煤炭学报,2017,42(增刊2):562-567.

    MAO Qinghua,CHEN Lei,YAN Yuzhou,et al. Precise control method of cutting head position of coal mine cantilever roadheader[J]. Journal of China Coal Society,2017,42(S2):562-567.
    [8] BAE H,KIM G,KIM J,et al. Multi-robot path planning method using reinforcement learning[J]. Applied Sciences,2019,9(15). DOI: 10.3390/app9153057.
    [9] NIEMANN J. Development of a reconfigurable assembly system with enhanced control capabilities and virtual commissioning[D]. Bloemfontein:Central University of Technology,Free State,2013.
    [10] 谢苗,李晓婧,刘治翔. 基于PID的掘进机横摆速度智能控制[J]. 机械设计与研究,2019,35(1):125-127,132.

    XIE Miao,LI Xiaojing,LIU Zhixiang. The intelligent control of roadheaders yaw velocity is established based on neural network PID control method[J]. Machine Design & Research,2019,35(1):125-127,132.
    [11] 胡兴涛,朱涛,苏继敏,等. 煤矿巷道智能化掘进感知关键技术[J]. 煤炭学报,2021,46(7):2123-2135.

    HU Xingtao,ZHU Tao,SU Jimin,et al. Key technology of intelligent drivage perception in coal mine roadway[J]. Journal of China Coal Society,2021,46(7):2123-2135.
    [12] 陆新时,马嵩华,胡天亮. 基于数字孪生的力能控制式压力机虚拟调试[J]. 小型微型计算机系统,2022,43(7):1356-1361.

    LU Xinshi,MA Songhua,HU Tianliang. Virtual commissioning of force-power controlled press machine based on digital twin[J]. Journal of Chinese Computer Systems,2022,43(7):1356-1361.
    [13] 马飞,代锟,孙巍伟. 基于数字孪生的物流拣选虚拟调试系统设计[J]. 机床与液压,2023,51(16):95-100.

    MA Fei,DAI Kun,SUN Weiwei. Design of virtual debugging system for logistics picking based on digital twin[J]. Machine Tool & Hydraulics,2023,51(16):95-100.
    [14] 杨春雨,张鑫. 煤矿机器人环境感知与路径规划关键技术[J]. 煤炭学报,2022,47(7):2844-2872.

    YANG Chunyu,ZHANG Xin. Key technologies of coal mine robots for environment perception and path planning[J]. Journal of China Coal Society,2022,47(7):2844-2872.
    [15] 张旭辉,赵建勋,张超,等. 悬臂式掘进机视觉伺服截割控制系统研究[J]. 煤炭科学技术,2022,50(2):263-270.

    ZHANG Xuhui,ZHAO Jianxun,ZHANG Chao,et al. Study on visual servo control system for cutting of cantilever roadheader[J]. Coal Science and Technology,2022,50(2):263-270.
    [16] 高赟,成哲. 虚拟调试技术在某车间输送系统的应用[J]. 工业控制计算机,2023,36(6):28-29.

    GAO Yun,CHENG Zhe. Application of virtual commissioning technology in conveyor system of a shop[J]. Industrial Control Computer,2023,36(6):28-29.
    [17] KLOSOWSKI J T,HELD M,MITCHELL J S B,et al. Efficient collision detection using bounding volume hierarchies of k-DOPs[J]. IEEE Transactions on Visualization and Computer Graphics,1998,4(1):21-36. doi: 10.1109/2945.675649
    [18] 王丹. 纵轴式硬岩掘进机截割机构的力学性能与参数优化[D]. 阜新:辽宁工程技术大学,2009.

    WANG Dan. The mechanical property and parameter optimization for cutting mechanism of vertical axis hard rock roadheader[D]. Fuxin:Liaoning Technical University,2009.
    [19] JAIN A,VERA D A,HARRISON R. Virtual commissioning of modular automation systems[J]. IFAC Proceedings Volumes,2010,43(4):72-77. doi: 10.3182/20100701-2-PT-4011.00014
    [20] 陶飞,张贺,戚庆林,等. 数字孪生模型构建理论及应用[J]. 计算机集成制造系统,2021,27(1):1-15.

    TAO Fei,ZHANG He,QI Qinglin,et al. Theory of digital twin modeling and its application[J]. Computer Integrated Manufacturing Systems,2021,27(1):1-15.
    [21] ENVER A T. I/O virtualization for commissioning:US11435728[P]. 2022-09-06.
    [22] 马宏伟,张璞,毛清华,等. 基于捷联惯导和里程计的井下机器人定位方法研究[J]. 工矿自动化,2019,45(4):35-42.

    MA Hongwei,ZHANG Pu,MAO Qinghua,et al. Research on positioning method of underground robot based on strapdown inertial navigation and odometer[J]. Industry and Mine Automation,2019,45(4):35-42.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  165
  • HTML全文浏览量:  33
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-09
  • 修回日期:  2024-06-25
  • 网络出版日期:  2024-07-30

目录

    /

    返回文章
    返回