Research on a digital twin driven virtual debugging method for roadway automatic forming cutting
-
摘要: 针对目前巷道自动成形截割控制调试周期长、调试成本大、安全风险大、成形质量难以评价等问题,提出了一种数字孪生驱动的巷道自动成形截割虚拟调试方法。采用基于即时外观建图(RTAP−MAP)技术重建巷道三维环境,构建掘进机控制系统模型,形成虚拟调试环境,并利用虚拟传感器技术实现物理空间到虚拟环境状态的精准映射。针对难以量化评估断面成形质量的问题,确立了巷道自动成形截割性能评价方法,以断面成形截割控制过程在数据传输中心的记录为基础,主要对断面成形精度、截割效率与油缸开关次数、硬岩切割调整、超挖欠挖4个评价指标进行计算,从而为深度学习算法的迭代优化提供精准反馈信号,并提出了一种融合强化学习的自动截割控制策略,以提高自动化作业的适应性和精确度。为验证该虚拟调试方法的有效性和准确性,搭建了掘进机自动控制实验平台,并将虚拟调试系统应用于掘进巷道成形截割自动控制程序中。虚拟仿真结果表明:① 被调试软件在控制关键点位处的X,Y,Z轴定位误差的最大值分别为74.8,72.93,123.67 mm,说明虚拟调试方法的定位精度达到性能要求。② 虚拟样机与物理样机轨迹基本一致,说明该调试方法实现了对物理空间的映射。应用结果表明:① 强化学习控制器在虚拟掘进测试中适应了复杂环境,将虚拟传感器输入有效转换为精准控制指令,验证了模拟−现实迁移训练的可行性。通过处理掘进精度和避免超欠挖的实时反馈,控制器学习并优化了策略。② 优化后的断面成形截割控制性能得到了提升,根据数据库中控制量时间戳的记录,用时126 s,较优化前耗时减少了8 s。③ 优化后截割部末端轨迹跟踪最大误差为6.0 mm,较优化前降低了0.3 mm,避免了截割轨迹抖动导致的欠挖,同时使得轨迹和断面更加平滑。Abstract: In response to the problems of long debugging cycle, high debugging cost, high safety risk, and difficult quality evaluation in the current automatic forming and cutting control of roadways, a digital twin driven virtual debugging method for roadway automatic forming and cutting is proposed. Firstly, by using real-time appearance mapping (RTAP-MAP) technology to reconstruct the three-dimensional environment of the roadway, a control system model of the roadheader is constructed to form a virtual debugging environment. The virtual sensor technology is used to achieve precise mapping from physical space to virtual environment state. A performance evaluation method for roadway automatic forming cutting has been established to address the problem of difficulty in quantitatively evaluating the quality of section forming. Based on the recording of the section forming cutting control process in the data transmission center, the evaluation indicators of section forming precision, cutting efficiency and the number of oil cylinder switches, hard rock cutting adjustment, and over excavation and under excavation are mainly calculated. This provides precise feedback signals for the iterative optimization of deep learning algorithms. An automatic cutting control strategy that integrates reinforcement learning is proposed to improve the adaptability and precision of automated operations. To verify the effectiveness and accuracy of the virtual debugging method, an automatic control experimental platform for roadheader is built. The virtual debugging system is applied to the automatic control program for forming cutting of excavation roadway. The virtual simulation results show the following points. ① The maximum positioning errors of the X, Y, and Z axes of the debugged software at the control key points are 74.8, 72.93, 123.67 mm, respectively. It indicates that the positioning precision of the virtual debugging method meets the performance requirements. ② The trajectory of the virtual prototype is basically consistent with that of the physical prototype, indicating that this debugging method has achieved mapping to the physical space. The application result shows the following points. ① The reinforcement learning controller adapts to complex environments in virtual excavation testing, effectively converts virtual sensor inputs into precise control instructions, and verifies the feasibility of simulation reality transfer training. By processing real-time feedback on excavation precision and avoiding over excavation and under excavation, the controller learns and optimizes the strategy. ② The improved section forming cutting control performance has been improved. According to the control quantity timestamp records in the database, it takes 126 seconds, which is 8 seconds less than before the improvement. ③ After improvement, the maximum error in tracking the end trajectory of the cutting section is 6.0 mm, which is 0.3 mm lower than before. This avoids the under excavation caused by the shaking of the cutting trajectory and makes the trajectory and section smoother.
-
表 1 截割部连杆参数
Table 1. Connecting rod parameters of cutting unit
连杆 ${d_i}$/mm ${a_{i - 1}}$/mm ${\alpha _{i - 1}}$/(°) ${\theta _i}$/(°) 01 0 0 0 θ1(0±45) 12 0 c1 −90 θ2(−90±45) 23 c2 55 −90 0 34 c3 0 0 0 表 2 基于虚拟传感器的机身定位结果
Table 2. Body positioning results based on virtual sensor
(mm,mm,mm) 序号 虚拟传感器定位坐标 虚拟空间坐标 误差 1 (840.41, 2132.92 ,5806.32 )(809.08, 2060 ,5930 )(31.35, 72.93, −123.67) 2 (981.51, 2032.57 ,6125.83 )( 1058.33 ,2060 ,6112 )(−76.76, −27.31, 13.78) 3 (926.91, 2005.23 ,6432.2 )(933.58, 2060 ,6423 )(−6.68, −54.73, 9.17) 4 ( 1723.83 ,1629.84 ,7449.22 )( 1798.61 ,1660 ,7498.1 )(−74.8, −30.18, −48.84) 5 ( 1908.67 ,1471.14 ,7980.21 )( 1915.45 ,1510 ,7930 )(−6.75, −38.87, 50.2) -
[1] 王国法,赵国瑞,任怀伟. 智慧煤矿与智能化开采关键核心技术分析[J]. 煤炭学报,2019,44(1):34-41.WANG Guofa,ZHAO Guorui,REN Huaiwei. Analysis on key technologies of intelligent coal mine and intelligent mining[J]. Journal of China Coal Society,2019,44(1):34-41. [2] 王虹,王步康,张小峰,等. 煤矿智能快掘关键技术与工程实践[J]. 煤炭学报,2021,46(7):2068-2083.WANG Hong,WANG Bukang,ZHANG Xiaofeng,et al. Key technology and engineering practice of intelligent rapid heading in coal mine[J]. Journal of China Coal Society,2021,46(7):2068-2083. [3] 王国法,张建中,薛国华,等. 煤矿回采工作面智能地质保障技术进展与思考[J]. 煤田地质与勘探,2023,51(2):12-26.WANG Guofa,ZHANG Jianzhong,XUE Guohua,et al. Progress and reflection of intelligent geological guarantee technology in coal mining face[J]. Coal Geology & Exploration,2023,51(2):12-26. [4] 王妙云,张旭辉,马宏伟,等. 远程控制综采设备碰撞检测与预警方法[J]. 煤炭科学技术,2021,49(9):110-116.WANG Miaoyun,ZHANG Xuhui,MA Hongwei,et al. Collision detection and pre-warning method for remotely controlled fully-mechanized mining equipment[J]. Coal Science and Technology,2021,49(9):110-116. [5] 李娟莉,沈宏达,谢嘉成,等. 基于数字孪生的综采工作面工业虚拟服务系统[J]. 计算机集成制造系统,2021,27(2):445-455.LI Juanli,SHEN Hongda,XIE Jiacheng,et al. Development of industrial virtual service system for fully mechanized mining face based on digital twin[J]. Computer Integrated Manufacturing Systems,2021,27(2):445-455. [6] 张旭辉,吕欣媛,王甜,等. 数字孪生驱动的掘进机器人决策控制系统研究[J]. 煤炭科学技术,2022,50(7):36-49.ZHANG Xuhui,LYU Xinyuan,WANG Tian,et al. Research on decision control system of tunneling robot driven by digital twin[J]. Coal Science and Technology,2022,50(7):36-49. [7] 毛清华,陈磊,闫昱州,等. 煤矿悬臂式掘进机截割头位置精确控制方法[J]. 煤炭学报,2017,42(增刊2):562-567.MAO Qinghua,CHEN Lei,YAN Yuzhou,et al. Precise control method of cutting head position of coal mine cantilever roadheader[J]. Journal of China Coal Society,2017,42(S2):562-567. [8] BAE H,KIM G,KIM J,et al. Multi-robot path planning method using reinforcement learning[J]. Applied Sciences,2019,9(15). DOI: 10.3390/app9153057. [9] NIEMANN J. Development of a reconfigurable assembly system with enhanced control capabilities and virtual commissioning[D]. Bloemfontein:Central University of Technology,Free State,2013. [10] 谢苗,李晓婧,刘治翔. 基于PID的掘进机横摆速度智能控制[J]. 机械设计与研究,2019,35(1):125-127,132.XIE Miao,LI Xiaojing,LIU Zhixiang. The intelligent control of roadheaders yaw velocity is established based on neural network PID control method[J]. Machine Design & Research,2019,35(1):125-127,132. [11] 胡兴涛,朱涛,苏继敏,等. 煤矿巷道智能化掘进感知关键技术[J]. 煤炭学报,2021,46(7):2123-2135.HU Xingtao,ZHU Tao,SU Jimin,et al. Key technology of intelligent drivage perception in coal mine roadway[J]. Journal of China Coal Society,2021,46(7):2123-2135. [12] 陆新时,马嵩华,胡天亮. 基于数字孪生的力能控制式压力机虚拟调试[J]. 小型微型计算机系统,2022,43(7):1356-1361.LU Xinshi,MA Songhua,HU Tianliang. Virtual commissioning of force-power controlled press machine based on digital twin[J]. Journal of Chinese Computer Systems,2022,43(7):1356-1361. [13] 马飞,代锟,孙巍伟. 基于数字孪生的物流拣选虚拟调试系统设计[J]. 机床与液压,2023,51(16):95-100.MA Fei,DAI Kun,SUN Weiwei. Design of virtual debugging system for logistics picking based on digital twin[J]. Machine Tool & Hydraulics,2023,51(16):95-100. [14] 杨春雨,张鑫. 煤矿机器人环境感知与路径规划关键技术[J]. 煤炭学报,2022,47(7):2844-2872.YANG Chunyu,ZHANG Xin. Key technologies of coal mine robots for environment perception and path planning[J]. Journal of China Coal Society,2022,47(7):2844-2872. [15] 张旭辉,赵建勋,张超,等. 悬臂式掘进机视觉伺服截割控制系统研究[J]. 煤炭科学技术,2022,50(2):263-270.ZHANG Xuhui,ZHAO Jianxun,ZHANG Chao,et al. Study on visual servo control system for cutting of cantilever roadheader[J]. Coal Science and Technology,2022,50(2):263-270. [16] 高赟,成哲. 虚拟调试技术在某车间输送系统的应用[J]. 工业控制计算机,2023,36(6):28-29.GAO Yun,CHENG Zhe. Application of virtual commissioning technology in conveyor system of a shop[J]. Industrial Control Computer,2023,36(6):28-29. [17] KLOSOWSKI J T,HELD M,MITCHELL J S B,et al. Efficient collision detection using bounding volume hierarchies of k-DOPs[J]. IEEE Transactions on Visualization and Computer Graphics,1998,4(1):21-36. doi: 10.1109/2945.675649 [18] 王丹. 纵轴式硬岩掘进机截割机构的力学性能与参数优化[D]. 阜新:辽宁工程技术大学,2009.WANG Dan. The mechanical property and parameter optimization for cutting mechanism of vertical axis hard rock roadheader[D]. Fuxin:Liaoning Technical University,2009. [19] JAIN A,VERA D A,HARRISON R. Virtual commissioning of modular automation systems[J]. IFAC Proceedings Volumes,2010,43(4):72-77. doi: 10.3182/20100701-2-PT-4011.00014 [20] 陶飞,张贺,戚庆林,等. 数字孪生模型构建理论及应用[J]. 计算机集成制造系统,2021,27(1):1-15.TAO Fei,ZHANG He,QI Qinglin,et al. Theory of digital twin modeling and its application[J]. Computer Integrated Manufacturing Systems,2021,27(1):1-15. [21] ENVER A T. I/O virtualization for commissioning:US11435728[P]. 2022-09-06. [22] 马宏伟,张璞,毛清华,等. 基于捷联惯导和里程计的井下机器人定位方法研究[J]. 工矿自动化,2019,45(4):35-42.MA Hongwei,ZHANG Pu,MAO Qinghua,et al. Research on positioning method of underground robot based on strapdown inertial navigation and odometer[J]. Industry and Mine Automation,2019,45(4):35-42.