煤矿井下空气质量革命技术现状与展望

袁亮, 薛生, 郑晓亮, 江丙友

袁亮,薛生,郑晓亮,等. 煤矿井下空气质量革命技术现状与展望[J]. 工矿自动化,2023,49(6):32-40. DOI: 10.13272/j.issn.1671-251x.18130
引用本文: 袁亮,薛生,郑晓亮,等. 煤矿井下空气质量革命技术现状与展望[J]. 工矿自动化,2023,49(6):32-40. DOI: 10.13272/j.issn.1671-251x.18130
YUAN Liang, XUE Sheng, ZHENG Xiaoliang, et al. Current situation and prospects of air quality revolution technology in coal mines[J]. Journal of Mine Automation,2023,49(6):32-40. DOI: 10.13272/j.issn.1671-251x.18130
Citation: YUAN Liang, XUE Sheng, ZHENG Xiaoliang, et al. Current situation and prospects of air quality revolution technology in coal mines[J]. Journal of Mine Automation,2023,49(6):32-40. DOI: 10.13272/j.issn.1671-251x.18130

煤矿井下空气质量革命技术现状与展望

基金项目: 国家自然科学基金项目(52074012,52204191);安徽省高校杰出青年基金项目(2022AHO20057);安徽省高校协同创新项目(GXXT-2020-059);陕西省创新能力支撑计划项目(2021TD-28);陕煤集团神木红柳林矿业有限公司委托课题(SMHLL-JS-YJ-202006)。
详细信息
    作者简介:

    袁亮(1960—),男,安徽金寨人,中国工程院院士,教授,博士研究生导师,主要研究方向为煤炭安全精准开采、煤矿瓦斯治理与职业安全健康,E-mail:yuanl_1960@sina.com

  • 中图分类号: TD714.3

Current situation and prospects of air quality revolution technology in coal mines

  • 摘要: 我国煤矿安全高效开采技术处于世界领先水平,但以粉尘为主的毒害物质、高温、高湿、噪声等多种职业危害因素诱发的职业疾病长期困扰煤矿从业人员,目前职业病危害已超过安全事故对职工的伤害,严重制约行业未来发展。提出了井下空气质量革命理念,全面总结了井下控降尘技术(包括煤层注水减尘技术、喷雾降尘技术、通风排尘技术、化学试剂抑尘技术、井下空气质量革命控降尘体系)、燃油车辆尾气治理、井下空气质量监测预警系统的现状。为进一步推进井下空气质量革命理论与技术突破,立足于“分源−分区−分级−分策”的粉尘高效治理理念,寻求建立多源多相多场粉尘协同降尘与综合治理的理论体系;指明了采掘区域粉尘高效智能防控技术及装备、矿井粉尘环境多参量同步智能监测技术及装备等关键技术装备的发展方向;指出必须充分融合理工医管学科建立煤矿粉尘防控多主体协同体系,为井下空气质量革命由目前的起步阶段向中高级阶段发展奠定理论与技术基础,分步实现煤矿从业人员生命全周期职业健康的目标,最终做到煤矿职业病少发病或零发病,助力健康中国战略。
    Abstract: China's coal mine safe and efficient mining technology is at the leading level in the world. But the occupational diseases induced by dust-based toxic substances, high temperature, high humidity, noise and other occupational hazard have long plagued coal mine employees. At present, occupational disease hazards have exceeded the harm of safety accidents to employees, seriously restricting the industry's future development. The concept of underground air quality revolution is put forward. The status of underground dust control and reduction technology (including coal seam water infusion dust reduction technology, spray dust reduction technology, ventilation dust removal technology, chemical reagent dust suppression technology, underground air quality revolution dust control and reduction system), fuel vehicle emission treatment, underground air quality monitoring and early warning system is comprehensively summarized. In order to further promote the theoretical and technological breakthroughs of the underground air quality revolution, based on the concept of "source-division-grading-strategy" for efficient dust control, we seek to establish a theoretical system for collaborative dust reduction and comprehensive management of multi-source, multiphase, and multi-field dust. The development direction of key technical equipment such as efficient intelligent dust prevention and control technology and equipment in mining areas, and synchronous intelligent monitoring technology and equipment for multiple parameters of mine dust environment has been pointed out. It is pointed out that it is necessary to fully integrate the disciplines of science, engineering, medical management, and establish a multi-agent collaborative system for coal mine dust prevention and control. It will lay a theoretical and technical foundation for the development of the underground air quality revolution from the current initial stage to the intermediate and advanced stages. Step by step, it will achieve the goal of full life cycle occupational health for coal mine employees. Ultimately, it will achieve the goal of reducing or zero incidences of occupational diseases in coal mines, supporting the Healthy China Initiative.
  • 图  1   煤层注水[9]

    Figure  1.   Coal seam water infusion[9]

    图  2   采煤工作面粉尘综合防控系统[8]

    1—支架封闭控尘装置;2—机载除尘装置;3—远射程气水喷雾装置;4—负压除尘微雾净化装置。

    Figure  2.   Dust integrated control system in coal working face[8]

    图  3   掘进工作面喷雾降尘系统[14]

    Figure  3.   Spray dust removal system in heading face[14]

    图  4   长压短抽通风排尘系统

    Figure  4.   Long-pressure short-suction ventilation dust removal system

    图  5   采煤区域粉尘高效净化设备体系

    Figure  5.   High efficiency dust purification equipment system in coal working area

    图  6   掘进区域粉尘高效净化设备体系

    Figure  6.   High efficiency dust purification equipment system in heading area

    图  7   矿井燃油车排放量和最优运行条件预测系统

    Figure  7.   Prediction system of mine fuel vehicle emission and optimal operating conditions

    图  8   井下空气质量在线监测与智能预警平台

    Figure  8.   Underground air quality online monitoring and intelligent early warning platform

    图  9   井下空气质量革命发展目标

    Figure  9.   The development goals of underground air quality revolution

  • [1] 健康中国行动推进委员会. 健康中国行动(2019−2030年):总体要求、重大行动及主要指标[J]. 中国循环杂志,2019,34(9):846-858.

    Healthy China Action Promotion Committee. Healthy China initiative (2019-2030):overall requirements,major actions and key indicators[J]. Chinese Circulation Journal,2019,34(9):846-858.

    [2] 李涛,李霜. 健康中国战略与职业健康保护[J]. 中国职业医学,2020,47(5):505-511.

    LI Tao,LI Shuang. Healthy China strategy and occupational health protection[J]. China Occupational Medicine,2020,47(5):505-511.

    [3] 聂武,孙新. 中国职业病防治70年回顾与展望[J]. 中国职业医学,2019,46(5):527-532.

    NIE Wu,SUN Xin. Achievements and prospects of occupational disease prevention and control in China in the past 70 years[J]. China Occupational Medicine,2019,46(5):527-532.

    [4] 袁亮. 煤矿粉尘防控与职业安全健康科学构想[J]. 煤炭学报,2020,45(1):1-7.

    YUAN Liang. Scientific conception of coal mine dust control and occupational safety[J]. Journal of China Coal Society,2020,45(1):1-7.

    [5] 李德文,赵政,郭胜均,等. “十三五”煤矿粉尘职业危害防治技术及发展方向[J]. 矿业安全与环保,2022,49(4):51-58.

    LI Dewen,ZHAO Zheng,GUO Shengjun,et al. "13th Five-Year Plan" coal mine dust occupational hazard prevention and control technology and development direction[J]. Mining Safety & Environmental Protection,2022,49(4):51-58.

    [6] 程卫民,周刚,陈连军,等. 我国煤矿粉尘防治理论与技术20年研究进展及展望[J]. 煤炭科学技术,2020,48(2):1-20.

    CHENG Weimin,ZHOU Gang,CHEN Lianjun,et al. Research progress and prospect of dust control theory and technology in China's coal mines in the past 20 years[J]. Coal Science and Technology,2020,48(2):1-20.

    [7] 杜善周,莫金明,王全龙,等. 大采高综采工作面粉尘运移分布规律及机载除尘器关键工艺参数研究[J]. 矿业安全与环保,2020,47(2):45-51.

    DU Shanzhou,MO Jinming,WANG Quanlong,et al. Research on key process parameters of airborne dust collector based on distribution law of dust movement in fully mechanized working face with large mining height[J]. Mining Safety & Environmental Protection,2020,47(2):45-51.

    [8] 黎志,马威,张设计,等. 8 m特大采高工作面粉尘综合防控技术研究及应用[J]. 矿业安全与环保,2021,48(4):60-67.

    LI Zhi,MA Wei,ZHANG Sheji,et al. Research and application of comprehensive prevention and control technology of dust in working face with 8 m extra large mining height[J]. Mining Safety & Environmental Protection,2021,48(4):60-67.

    [9] 彭亚,蒋仲安,付恩琦,等. 综采工作面煤层注水防尘优化及效果研究[J]. 煤炭科学技术,2018,46(1):224-230.

    PENG Ya,JIANG Zhong'an,FU Enqi,et al. Study on seam water injection and dust control optimization and effect of fully-mechanized coal mining face[J]. Coal Science and Technology,2018,46(1):224-230.

    [10] 张小涛. 高瓦斯突出煤层综采工作面注水降尘技术应用研究[J]. 煤炭科学技术,2019,47(1):231-236.

    ZHANG Xiaotao. Applied study on water injection and dust reduction technology of fully-mechanized coal mining face in high gassy and outburst seam[J]. Coal Science and Technology,2019,47(1):231-236.

    [11] 孔阳,庞浩生,宋淑郑,等. 综采工作面粉尘弥散污染规律数值模拟研究[J]. 煤矿安全,2020,51(6):218-222.

    KONG Yang,PANG Haosheng,SONG Shuzheng,et al. Numerical simulation study on law of dispersive pollution of dust in fully mechanized mining face[J]. Safety in Coal Mines,2020,51(6):218-222.

    [12] 赵卫强,句海洋,陈磊. 采煤机截割粉尘扩散运移规律研究[J]. 煤炭工程,2017,49(11):109-111,115.

    ZHAO Weiqiang,JU Haiyang,CHEN Lei. Calculation and analysis on diffusion and mitigation law of dust generated by coal shear[J]. Coal Engineering,2017,49(11):109-111,115.

    [13] 秦波涛,周刚,周群,等. 煤矿综采工作面活性磁化水喷雾降尘技术体系与应用[J]. 煤炭学报,2021,46(12):3891-3901.

    QIN Botao,ZHOU Gang,ZHOU Qun,et al. Dust removal system and application of the surfactant-magnetized water spray in the fully mechanized mining face of coal mines[J]. Journal of China Coal Society,2021,46(12):3891-3901.

    [14] 孙峰. 大断面煤巷掘进工作面综掘机高压外喷雾降尘技术及装备的应用研究[J]. 矿业安全与环保,2019,46(3):52-56.

    SUN Feng. Applied research of the dust removal technology and equipment for high pressure external spray in the large section coal lane[J]. Mining Safety & Environmental Protection,2019,46(3):52-56.

    [15] 丁翠. 掘进巷道粉尘运移扩散规律研究进展[J]. 煤矿安全,2018,49(9):219-222,232.

    DING Cui. Research progress of dust movement and diffusion laws in excavation roadway[J]. Safety in Coal Mines,2018,49(9):219-222,232.

    [16] 周福宝,李建龙,李世航,等. 综掘工作面干式过滤除尘技术实验研究及实践[J]. 煤炭学报,2017,42(3):639-645.

    ZHOU Fubao,LI Jianlong,LI Shihang,et al. Experimental investigation and application of dry-type filtering dust collection technology in fully mechanized excavation face[J]. Journal of China Coal Society,2017,42(3):639-645.

    [17] 程卫民,聂文,姚玉静,等. 综掘工作面旋流气幕抽吸控尘流场的数值模拟[J]. 煤炭学报,2011,36(8):1342-1348.

    CHENG Weimin,NIE Wen,YAO Yujing,et al. Numerical simulation on the flow field of swirling flow air curtain aspiration control dust in fully mechanized workface[J]. Journal of China Coal Society,2011,36(8):1342-1348.

    [18] 张小涛,曹树刚,李德文. 基于附壁射流的控、除尘一体化技术研究[J]. 中国矿业大学学报,2019,48(3):495-502.

    ZHANG Xiaotao,CAO Shugang,LI Dewen. Study of integrated dust control and dust removal technology based on wall-attached jet theory[J]. Journal of China University of Mining & Technology,2019,48(3):495-502.

    [19] 聂文,魏文乐,刘阳昊,等. 岩石机掘面多径向旋流风控除尘方法的研究与应用[J]. 中南大学学报(自然科学版),2016,47(10):3612-3619.

    NIE Wen,WEI Wenle,LIU Yanghao. Research on dust control and removal method of multi-direction rotational air curtain at rock mechanized excavation face and its application[J]. Journal of Central South University(Science and Technology),2016,47(10):3612-3619.

    [20] 杨静,谭允祯,伍修锟,等. 煤尘润湿动力学模型的研究[J]. 煤炭学报,2009,34(8):1105-1109.

    YANG Jing,TAN Yunzhen,WU Xiukun,et al. Study on the dynamic model of wetting coal dust[J]. Journal of China Coal Society,2009,34(8):1105-1109.

    [21] 阎杰,杨永竹,段龙,等. 基于响应面法的煤尘抑尘剂配方的优化研究[J]. 应用化工,2019,48(9):2036-2040. DOI: 10.3969/j.issn.1671-3206.2019.09.004

    YAN Jie,YANG Yongzhu,DUAN Long,et al. Study on formula optimization of coal dustfall agent based on response surface method[J]. Applied Chemical Industry,2019,48(9):2036-2040. DOI: 10.3969/j.issn.1671-3206.2019.09.004

    [22] 刘福东,单文坡,潘大伟,等. NH3选择性还原NOx技术在重型柴油车尾气净化中的应用[J]. 催化学报,2014,35(9):1438-1445. DOI: 10.1016/S1872-2067(14)60048-6

    LIU Fudong,SHAN Wenpo,PAN Dawei,et al. Selective catalytic reduction of NOx by NH3 for heavy-duty diesel vehicles[J]. Chinese Journal of Catalysis,2014,35(9):1438-1445. DOI: 10.1016/S1872-2067(14)60048-6

    [23] 杨铮铮,黎云祥,廖运文,等. Pt/SiO2−Al2O3抗硫型柴油车尾气净化氧化催化剂的制备及性能[J]. 环境化学,2016,35(8):1682-1689.

    YANG Zhengzheng,LI Yunxiang,LIAO Yunwen,et al. Preparation and properties of the Pt/SiO2-Al2O3 sulfur resistance diesel oxidation catalyst[J]. Environmental Chemistry,2016,35(8):1682-1689.

    [24] 王杰,郑林江. 煤矿粉尘职业危害监测技术及其发展趋势[J]. 煤炭科学技术,2017,45(11):119-125. DOI: 10.13199/j.cnki.cst.2017.11.020

    WANG Jie,ZHENG Linjiang. Development tendency and monitoring technology of dust occupational hazard in coal mine[J]. Coal Science and Technology,2017,45(11):119-125. DOI: 10.13199/j.cnki.cst.2017.11.020

    [25] 郑林江,周龙辉,王杰,等. 基于物联网的煤矿粉尘监测云服务平台设计[J]. 煤炭科学技术,2019,47(7):164-170. DOI: 10.13199/j.cnki.cst.2019.07.020

    ZHENG Linjiang,ZHOU Longhui,WANG Jie,et al. Design of coal mine dust monitoring cloud service platform based on Internet of things[J]. Coal Science and Technology,2019,47(7):164-170. DOI: 10.13199/j.cnki.cst.2019.07.020

    [26] 杨晓艳,鲁红英. 基于模糊综合评判的城市环境空气质量评价[J]. 中国人口·资源与环境,2014,24(增刊2):143-146.

    YANG Xiaoyan,LU Hongying. Evaluating ambient air quality of Beijing by fuzzy comprehensive assessment method[J]. China Population,Resources and Environment,2014,24(S2):143-146.

    [27] 黄婧,郭新彪. 机动车尾气污染暴露评价方法的研究进展[J]. 环境化学,2011,30(1):138-142.

    HUANG Jing,GUO Xinbiao. Research progress in exposure assessment methods of vehicle exhaust pollution[J]. Environmental Chemistry,2011,30(1):138-142.

    [28] 王国法. 煤矿智能化最新技术进展与问题探讨[J]. 煤炭科学技术,2022,50(1):1-27.

    WANG Guofa. New technological progress of coal mine intelligence and its problems[J]. Coal Science and Technology,2022,50(1):1-27.

    [29] 赵政,李德文,吴付祥,等. 基于光散射法和电荷感应法融合的粉尘浓度检测技术[J]. 东北大学学报(自然科学版),2021,42(1):139-146,152.

    ZHAO Zheng,LI Dewen,WU Fuxiang,et al. Dust concentration detection technology based on fusion of light scattering method and charge induction method[J]. Journal of Northeastern University(Natural Science),2021,42(1):139-146,152.

    [30] 徐一菲,金龙哲,魏祎璇,等. 有限空间作业人员生理状态监测设备研制[J]. 中国安全科学学报,2021,31(3):82-89.

    XU Yifei,JIN Longzhe,WEI Yixuan,et al. Development of monitoring device for physiological condition of workers in confined space[J]. China Safety Science Journal,2021,31(3):82-89.

    [31] 贺耀宜,王海波. 基于物联网的可融合性煤矿监控系统研究[J]. 工矿自动化,2019,45(8):13-18. DOI: 10.13272/j.issn.1671-251x.17458

    HE Yaoyi,WANG Haibo. Research on coal mine fusion monitoring system based on Internet of things[J]. Industry and Mine Automation,2019,45(8):13-18. DOI: 10.13272/j.issn.1671-251x.17458

  • 期刊类型引用(10)

    1. 肖明国,张彪,林中湘,朱泽斌,周博,郑学召,黄渊. 矿山钻孔垂直救援技术的思考及发展趋势. 煤矿安全. 2024(04): 245-250 . 百度学术
    2. 肖明国,张彪,康玉国,丁文,黄渊,郑学召. 面向钻孔救援的UWB雷达探测技术研究进展. 煤炭技术. 2024(06): 174-177 . 百度学术
    3. 郑学召,马扬,黄渊,蔡国斌,丁文. 面向矿山救援的UWB雷达生命信息识别研究现状与展望. 工矿自动化. 2024(07): 12-20 . 本站查看
    4. 赵一鸣,相志,张农,戴京辰. 雷达探测中煤岩介质相对介电常数变化特征. 采矿与安全工程学报. 2024(06): 1222-1229 . 百度学术
    5. 邹祖杰. 近水平定向取心技术与配套钻具研究及应用. 煤矿安全. 2024(12): 214-220 . 百度学术
    6. 王健. 井下储水采空区多应力监测预警分析. 煤矿机电. 2024(06): 38-42 . 百度学术
    7. 文虎,刘盛铠,郑学召,蔡国斌,黄渊,张会. 基于钻孔救援的UWB雷达波传输衰减研究及展望. 工矿自动化. 2023(04): 42-49 . 本站查看
    8. 郑学召,丁文,蔡国斌,黄渊,寇智哲,周博. 面向钻孔救援的UWB雷达回波信息处理关键问题研究进展. 煤矿安全. 2023(10): 219-225 . 百度学术
    9. 郑学召,孙梓峪,郭军,张铎,陈刚,何芹健. 矿山钻孔救援多源信息探测技术研究与应用. 煤田地质与勘探. 2022(11): 94-102 . 百度学术
    10. 田宏亮,邹祖杰,郝世俊,曹明,周光华,黄勇,顾海荣,王雷. 矿山灾害生命保障救援通道快速安全构建关键技术与装备. 煤田地质与勘探. 2022(11): 1-13 . 百度学术

    其他类型引用(4)

图(9)
计量
  • 文章访问数:  1100
  • HTML全文浏览量:  72
  • PDF下载量:  110
  • 被引次数: 14
出版历程
  • 收稿日期:  2023-05-23
  • 修回日期:  2023-06-18
  • 网络出版日期:  2023-06-29
  • 刊出日期:  2023-06-24

目录

    /

    返回文章
    返回