Summary of research on artificial intelligence empowerment technology for new generation intelligent coal mine
-
摘要: 煤炭工业与人工智能(AI)深度融合是现代化矿井实现智能少人、降本提效的重要路径,而煤炭行业全流程、全业务应用场景的AI赋能是实现煤矿智能化的具体技术措施。在当前煤矿智能化发展背景下,提出了初级智能煤矿向新一代智能煤矿演进的基本范式,对比分析了初级智能煤矿与新一代智能煤矿的组成、功能与技术内涵,揭示了新一代智能煤矿AI赋能技术的重要性及其应用实施的2个关键:煤矿工业机理AI模型与煤矿工业互联网平台。总结了关于煤矿地质、采煤、掘进、安全监控等复杂作业环节的工业机理AI模型研究现状,阐明了工业机理AI分析在智能煤矿建设中的快速发展态势。设计了新一代智能煤矿多级云边协同工业互联网平台架构,利用集团数据中心、矿井数据中心、生产系统集控中心等工业信息软硬件设施,结合海量数据云计算和少量数据边缘计算特点,提出了集团云、矿井云与环节边、场景边的多级云边协同机制。指出了未来进一步研究方向,应不断加强煤矿工业机理AI模型的开发与软件化研究,逐步形成煤矿全流程AI赋能的知识软件体系,并充分运用煤矿工业互联网平台的数字资源与信息设施,逐步实现煤矿工业互联网平台的AI技术承载。
-
关键词:
- 新一代智能煤矿 /
- 人工智能 /
- AI赋能 /
- 煤矿工业机理AI模型 /
- 煤矿工业互联网
Abstract: The deep integration of the coal industry and artificial intelligence (AI) is an important path for modern mines to achieve intelligent personnel reduction, cost reduction, and efficiency improvement. AI empowerment in the entire process and business application scenarios of the coal industry is a specific technical measure to achieve coal mine intelligence. In the context of the current development of intelligent coal mines, a basic paradigm for the evolution of primary intelligent coal mines to new generation intelligent coal mines has been proposed. The composition, functions, and technical connotations of primary intelligent coal mines and new generation intelligent coal mines have been compared and analyzed. It is pointed out the importance of AI empowerment technology for new generation intelligent coal mine and its two key applications and implementation: the coal mine industry mechanism AI model and the coal mine Industry internet platform. The paper summarizes the current research status of industrial mechanism AI models for complex operations such as coal mine geology, mining, excavation, and safety monitoring. The paper clarifies the rapid development trend of industrial mechanism AI analysis in intelligent coal mine construction. A new generation of intelligent coal mine multi-level cloud edge collaborative industrial Internet platform architecture is designed. Using industrial information software and hardware facilities such as group data center, mine data center, production system centralized control center, and combining the features of massive data cloud computing and small amount of data edge computing, a multi-level cloud edge collaborative mechanism of group cloud, mine cloud and link edge, scene edge is proposed. It is pointed out that further research directions in the future should continue to strengthen the development and software research of AI models for coal mining industry mechanisms. Gradually a knowledge software system empowered by AI throughout the entire process of coal mining will be formed. It is suggested to fully utilize the digital resources and information facilities of the coal mining industry Internet platform to gradually realize the AI technology support of the coal mining industry Internet platform. -
0. 引言
立井提升系统是煤矿矿井的咽喉,在提升系统中,罐道和罐耳共同构成导向装置,导向装置是提升系统健康运行的重要保障。当刚性罐道存在缺陷时,会导致提升容器受到冲击振动。因此,及时诊断刚性罐道潜存的故障,是保障煤矿安全高效生产、降低安全事故风险、减少生产成本的重要前提之一。
目前,研究人员根据采集的提升容器在振动冲击下的信号,提出了多种刚性罐道故障诊断方法。文献[1]针对提升容器的故障响应,利用尺度平均小波能量百分比表征罐道缺陷相关频率上的能量随提升过程的变化,从而削弱了随机噪声的干扰;通过 Tukey控制图法自适应地设定健康监测阈值,消除了工况变化对检测效果的影响,实现了不同工况下罐道缺陷的有效检测。文献[2]针对现有刚性罐道故障诊断方法不能消除环境因素影响 、接头故障识别率较低等问题,提出了基于小波包和BP神经网络的刚性罐道故障诊断方法。运用小波包分解对采集的信号进行能量分析并提取缺陷特征参数,将缺陷特征参数作为BP神经网络的输入,选取新的测试样本检测神经网络的诊断效果。上述研究提出的机器学习方法虽然可以实现对缺陷的识别,但是仅适用于小样本的数据集。
文献[3]将经验模态分解与概率神经网络相结合,实现了对刚性罐道缺陷的诊断,但是研究的工况较单一。文献[4]提出采用CMOS+FPGA+ARM架构的刚性罐道图像采集处理和识别方案,解决了系统容量、运算能力和嵌入式软核性能不足的缺点,但存在图像采集效果受光线、振动影响较大的问题。上述研究成果虽成功将大样本数据集融入到刚性罐道故障诊断中,但忽略了实际工作环境中的多工况背景。
卷积神经网络[5-8]是一种特殊的多层感知器或前馈神经网络,其不仅适用于变工况下的故障诊断,且诊断准确率很高。文献[9]提出了一种新的深度卷积神经网络及其在变工况滚动轴承故障诊断方法,对滚动轴承故障进行识别,取得了优异的诊断效果,但是模型的计算量和内存负担非常大,当迭代次数达到一定次数后极易产生过拟合现象。
针对上述问题,本文对卷积神经网络模型进行改进,提出了一种基于小波变换和改进卷积神经网络的刚性罐道缺陷诊断方法。小波变换[10-11]将一维振动信号转换为二维时频图像能够直观显示信号在不同频段上的能量分布信息,可对多工况背景下的刚性罐道进行有效特征提取。通过改进卷积神经网络模型结构解决缺陷诊断中的过拟合问题,降低运算量。
1. 刚性罐道缺陷诊断过程
基于小波变换和改进卷积神经网络的刚性罐道缺陷诊断过程如图1所示。首先,分别在刚性罐道上设置错位缺陷、间隙缺陷和无缺陷3种状态,通过变换负载、速度的方式模拟多工况,通过改变间隙长度、错位高度模拟多缺陷种类,并采集提升容器振动加速度信号作为实验数据。其次,利用小波变换将采集的振动信号转换为二维时频图像,打上对应的标签后按比例设置训练集、测试集和验证集。然后,将模型深度拓展至5层卷积层,局部增加批标准化(Batch Normalization,BN)层和Dropout层,利用小尺寸卷积核、长步幅的卷积层局部代替池化层,改进卷积神经网络模型。最后,利用验证集对网络模型的诊断效果进行验证。
2. 小波变换
2.1 振动加速度信号采集与选取
刚性罐道作为立井提升系统重要组成部分,现场采集罐道数据会耽误煤矿正常的生产任务,且存在安全隐患,因此,需要搭建立井提升系统实验台(图2)模拟不同罐道故障下提升容器振动响应。在刚性罐道上设置高度为5 mm的错位缺陷、长度为10 mm的间隙缺陷。利用三方向加速度传感器、四通道数据采集仪、DSPA V11数据采集软件实现动态数据采集。
提升容器的顶部和底部均安装有滚轮罐耳,当滚轮罐耳经过罐道缺陷时会受到冲击激励,提升容器会产生水平方向的振动响应。将三方向加速度传感器安装于罐笼顶部中间位置,采样频率为1 024 Hz,提升速度为0.15 m/s。采集2种缺陷时振动加速度信号,如图3、图4所示。
由图3可看出,在0~0.5 s时滚轮罐耳在刚性罐道上平稳运行;在0.5~0.6 s时滚轮罐耳接触到刚性罐道错位缺陷处的台阶部位,受到迎轮冲击,导致提升容器发生水平方向的振动,提升系统的加速度发生变化;0.6 s之后滚轮罐耳离开刚性罐道并且爬过错位,因错位缺陷处产生的冲击能量在滚轮罐耳的运行中耗散,呈阻尼衰减现象直至平稳。y方向振动加速度特征较x方向振动加速度特征更明显,故选取y方向振动加速度信号作为错位缺陷信号进行分析。
由图4可看出,在0~0.4 s时滚轮罐耳未接触间隙缺陷,在刚性罐道上平稳运行;在0.4 s左右滚轮罐耳接触到间隙缺陷的下端,此时滚轮罐耳作用于刚性罐道的压力开始减小;在0.55 s左右滚轮罐耳接触到间隙缺陷的上端,滚轮罐耳与刚性罐道发生撞击,且刚性罐道对滚轮罐耳施加压力;0.55 s之后冲击振动呈阻尼衰减,并且弹簧重新被压缩。x方向振动加速度特征较y方向振动加速度特征更明显,故选取x方向振动加速度信号作为间隙缺陷信号进行分析。
2.2 小波基函数选取与二维时频图像生成
采用 Haar、Daubechies、Symlets和 Complex Morlet(简称cmor) 等4种小波基函数对错位缺陷和间隙缺陷的振动加速度信号进行时频分析[12],小波变换的尺度序列长度设置为 512。错位缺陷、间隙缺陷时振动加速度信号二维时频图像如图5、图6所示。
由图5可看出,错位缺陷时振动加速度信号均在0.5 s前后受到冲击激励,使得加速度的方向和大小在0.5 s左右发生突变,随后呈阻尼衰减,冲击激励频率为400~500 Hz。由图6可看出,间隙缺陷时振动加速度信号均在0.4~0.6 s发生加速度方向与幅值的变化。由图5和图6还可看出 ,利用cmor小波基函数进行小波变换的时频图像具备最佳的时间和频率分辨率。
小波中心频率和带宽是衡量时间和频率分辨率的标准,通过试凑法调整小波中心频率,发现当错位缺陷、间隙缺陷、无缺陷时振动加速度信号分别采用cmor3-3,cmor3-1,cmor3-2小波基函数时,二维时频图像的时间和频率分辨率综合效果最优,同时能够表现出较好的细小噪声消除效果。
3. 改进卷积神经网络
根据实际需求,对利用卷积神经网络刚性罐道的错位缺陷、间隙缺陷和无缺陷3种模式进行识别。参照文献[11]进行网络参数设置,随着卷积层数增加,模型对于刚性罐道故障诊断的准确率逐渐上升,但当改进卷积层数超过5时,输出图像像素小于卷积核尺寸,故卷积层数最大设置为5。为保证看到的图像信息更多,获得更好的全局特征,设卷积核尺寸为5,数量分别为16,32,64,32,64,卷积步长为1,图像边界填充为2。
卷积神经网络中应用尺寸大的卷积核会导致计算量增大,不利于模型深度的增加,计算性能也会降低,极易产生过拟合问题。因此利用卷积核尺寸为3、卷积步长为2、图像边界填充为1的小尺度卷积层替换第2,3,4层池化层,以改进卷积神经网络结构。改进后的卷积神经网络模型结构如图7所示,其中,
s 为卷积核步长,p 为图像边缘增加的边界像素层数。保留第1层池化层,可有效剔除大部分非代表性特征信息。保留第5层池化层,能够较大程度地减少参数,避免参数量太大减缓计算速度,同时减少过拟合风险。将第2,3,4层池化层替换为小尺度卷积层,对图像像素特征进行提取与降维。池化层中的池化单元(池化单元尺寸为2×2,步幅为2,边界填充为1)使用最大池化函数,降低信息冗余和过拟合。改进卷积神经网络模型结构选取ReLU函数为激活函数,选择Adam优化算法作为模型的优化器,设置BN层和Dropout层,防止过拟合和提高模型泛化能力。最后,输出层使用Softmax作为分类器。
4. 实验结果与分析
4.1 数据集
根据MT 5010−1995《煤矿安装工程质量检验评定标准》中罐道安装规定,设置刚性罐道错位缺陷的高度分别为5,8,10,12 mm,间隙缺陷的长度分别为5,8,10,15 mm,设置提升容器负载质量分别为0,4,6,8 kg。根据《煤矿安全规程》中规定,提升容器的运行速度
⩽ (提升系统实验台高度H=3 m),计算得到提升容器的最高运行速度为0.87 m/s,实验中设置提升容器的最低速度为0.15 m/s,最高速度为0.65 m/s,通过调节变频器频率,将提升容器的运行速度划分为11级,每级递增0.05 m/s,每种运行速度下采集10组信号数据。采集错位缺陷、间隙缺陷和无缺陷时振动加速度信号数据各1 760组,其中有效数据1 690组,将数据转换为二维时频图像,图像尺寸为224×224。将数据集按照8∶2划分,即训练集包含4 056张图像,测试集包含1 014张图像。在多种随机模式下采集错位缺陷、间隙缺陷和无缺陷时振动加速度数据各100组作为验证集,即验证集包含300张图像。
4.2 实验验证
将训练集和测试集输入至搭建好的改进卷积神经网络模型,设间隙缺陷、错位缺陷和无缺陷标签分别为0,1,2,批尺寸为24,学习率为0.000 01,训练轮次为20,改进神经网络模型的准确率如图8所示。可看出改进模型经过训练后,在训练集上的平均准确率达99%左右,在测试集上的平均准确率达99.5%,说明改进模型可信度高。
为进一步展示模型训练过程的学习效果,设训练步数为500,改进模型的准确率与损失函数值变化趋势如图9所示。可看出当数据训练至200步后,模型的准确率达99%以上,模型的损失函数值趋近于0,说明模型收敛性能较好,模型的泛化能力得到了增强,在学习过程中对于过拟合的抑制效果明显。
利用验证集的数据对改进卷积神经网络模型进行验证,将验证集输入训练过的模型并生成预测结果的混淆矩阵,如图10所示。可看出间隙缺陷和错位缺陷识别准确率为100%,无缺陷识别准确率为92%。这是因为在MT 5010−1995中规定,当刚性罐道间隙不大于4 mm时,仍划分为无缺陷刚性罐道,所以在实际分类过程中,容易将间隙较大的无缺陷刚性罐道诊断为间隙缺陷。说明通过小波变换结合改进卷积神经网络模型能够很好地对刚性罐道故障进行诊断。
选取平均准确率作为衡量指标,对比EMD(Empirical Mode Decommposition,经验模态分解)−SVD(Singular Value Decomposition,奇异值分解)−SVM(Support Vector Machine,支持向量机)[13]、小波包−SVM[14]、EMD−SVD−BP神经网络[15]、小波包−BP神经网络[15]和本文方法对刚性罐道故障诊断的准确率。EMD−SVD−SVM方法中初始向量为IMF1−IMF5(固有模态函数),SVM采用RBF为核函数,svmtrain函数中惩罚函数的范围为[2−10, 210],参数取值范围为[2−10, 210],交叉验证参数取3;小波包−SVM方法利用db2小波基分解到8个频段,采样频率为1 024 Hz,分析频率为512 Hz,分别计算出3种缺陷时振动加速度不同频段的能量并作为特征向量;EMD−SVD−BP神经网络方法中输入层和输出层节点数分别为4和3,隐藏层数为5;小波包−BP神经网络方法中输入层节点数为8,隐藏层数为5,BP神经网络隐含层传递函数选择tansing函数,输出层传递函数选择purelin函数,训练函数选择Levenberg Martquardt函数,学习率为0.1。不同方法下缺陷诊断结果如图11所示。
由图11可看出,EMD−SVD−SVM准确率为86.67%,小波包−SVM准确率为83.33%,EMD−SVD−BP神经网络准确率为92.75%,小波包−BP神经网络准确率为82.88%,本文方法准确率为99%,说明本文方法在刚性罐道缺陷诊断方面较传统的故障诊断方法存在明显优势。
5. 结论
(1) 利用小波变换将采集的振动加速度信号转换为二维时频图像,采用试凑法最终确定cmor小波基函数处理后的二维时频图像的时间和频率分辨率最佳。
(2) 改进卷积神经网络模型经过训练后,在训练集上的平均准确率为99%左右,在测试集上的平均准确率为99.5%,说明改进模型可信度高。
(3) 当数据训练至200步后,改进模型的准确率达99%以上,模型的损失函数值趋近于0,说明模型收敛性能较好,模型的泛化能力得到了增强,在学习过程中对于过拟合的抑制效果明显,改进后的模型可信度高。
(4) 在验证集混淆矩阵上,间隙缺陷和错位缺陷识别准确率为100%,无缺陷识别准确率为92%。说明通过小波变换结合改进卷积神经网络模型能够很好地对刚性罐道的故障进行诊断。
(5) 基于小波变换和改进卷积神经网络的刚性罐道故障诊断方法在刚性罐道缺陷诊断与预测方面较传统的故障诊断方法存在明显优势,准确率达99%。
-
-
[1] 中国煤炭工业协会. 2022煤炭行业发展年度报告[R]. 北京:中国煤炭工业协会,2022. China National Coal Association. 2022 coal industry development annual report[R]. Beijing:China National Coal Association,2022.
[2] 王国法,张良,李首滨,等. 煤矿无人化智能开采系统理论与技术研发进展[J]. 煤炭学报,2023,48(1):34-53. DOI: 10.13225/j.cnki.jccs.2022.1536 WANG Guofa,ZHANG Liang,LI Shoubin,et al. Progresses in theory and technological development of unmanned smart mining system[J]. Journal of China Coal Society,2023,48(1):34-53. DOI: 10.13225/j.cnki.jccs.2022.1536
[3] 国务院. 国务院关于印发新一代人工智能发展规划的通知[EB/OL]. [2023-05-04]. http://www.gov.cn/zhengce/content/2017-07/20/content_5211996.htm. State Council. Notice of The State Council on the issuance of a new generation of artificial intelligence development plan[EB/OL]. [2023-05-04]. http://www.gov.cn/zhengce/content/2017-07/20/content_5211996.htm.
[4] 前瞻产业研究院. 2023—2028年中国人工智能行业发展前景预测与投资战略规划分析报告[R]. 北京:前瞻产业研究院,2023. Prospective Industry Research Institute. Report of development prospective and development strategy planning analysis on China artificial intelligence industry(2023-2028)[R]. Beijing:Prospective Industry Research Institute,2023.
[5] 国家能源局. 国家能源局关于加快推进能源数字化智能化发展的若干意见(国能发科技〔2023〕27号)[EB/OL]. [2023-05-04]. http://zfxxgk.nea.gov.cn/2023-03/28/c_1310707122.htm. National Energy Administration. Several opinions of the National Energy Administration on accelerating the development of digital and intelligent energy(National Energy Development Technology〔2023〕No. 27)[EB/OL]. [2023-05-04]. http://zfxxgk.nea.gov.cn/2023-03/28/c_1310707122.htm.
[6] 中国煤炭工业协会. 基于工业互联网的煤炭企业信息化基础设施建设白皮书(2022版)[EB/OL]. [2023-05-04]. https://max.book118.com/html/2022/0625/8125134007004113.shtm. China National Coal Association. White paper on informatization infrastructure construction of coal enterprises based on industrial Internet(2022 edition)[EB/OL]. [2023-05-04]. https://max.book118.com/html/2022/0625/8125134007004113.shtm.
[7] 金智新,王宏伟,付翔. HCPS理论体系下新一代智能煤矿发展路径[J]. 工矿自动化,2022,48(10):1-12. JIN Zhixin,WANG Hongwei,FU Xiang. Development path of new generation intelligent coal mine under HCPS theory system[J]. Journal of Mine Automation,2022,48(10):1-12.
[8] 朱梦博. 采煤工作面高精度三维地质模型动态构建技术研究[D]. 北京:煤炭科学研究总院,2021. ZHU Mengbo. Dynamic construction of high-precision 3D geological model for coal mining panel[D]. Beijing:China Coal Research Institute,2021.
[9] JIA Qingren,CHE Defu,LI Wenwen. Effective coal seam surface modeling with an improved anisotropy-based,multiscale interpolation method[J]. Computers and Geosciences,2019,124:72-84. DOI: 10.1016/j.cageo.2018.12.008
[10] 刘再斌,刘程,刘文明,等. 透明工作面多属性动态建模技术[J]. 煤炭学报,2020,45(7):2628-2635. LIU Zaibin,LIU Cheng,LIU Wenming,et al. Multi-attribute dynamic modeling technique for transparent working face[J]. Journal of China Coal Society,2020,45(7):2628-2635.
[11] 贾庆仁,车德福,李佳徐,等. 动态精化的煤层三维建模方法[J]. 东北大学学报(自然科学版),2018,39(5):726-730. JIA Qingren,CHE Defu,LI Jiaxu,et al. Three-dimensional modeling method of coal seam with gradual refinement[J]. Journal of Northeastern University(Natural Science),2018,39(5):726-730.
[12] 刘万里,张学亮,王世博. 采煤工作面煤层三维模型构建及动态修正技术[J]. 煤炭学报,2020,45(6):1973-1983. LIU Wanli,ZHANG Xueliang,WANG Shibo. Modeling and dynamic correction technology of 3D coal seam model for coal-mining face[J]. Journal of China Coal Society,2020,45(6):1973-1983.
[13] 谢洋. 基于LSTM的煤层地质模型动态预测方法研究[D]. 徐州:中国矿业大学,2021. XIE Yang. Research on dynamic prediction method of coal seam geological model based on LSTM[D]. Xuzhou:China University of Mining and Technology,2021.
[14] 郭昌放. 基于多源数据协同和智能算法的煤矿工作面透明化系统研究[D]. 徐州:中国矿业大学,2020. GUO Changfang. Research on transparency system of working face based on multi-source data collaboration and intelligent algorithms[D]. Xuzhou:China University of Mining and Technology,2020.
[15] 王海舰,黄梦蝶,高兴宇,等. 考虑截齿损耗的多传感信息融合煤岩界面感知识别[J]. 煤炭学报,2021,46(6):1995-2008. WANG Haijian,HUANG Mengdie,GAO Xingyu,et al. Coal-rock interface recognition based on multi-sensor information fusion considering pick wear[J]. Journal of China Coal Society,2021,46(6):1995-2008.
[16] 司垒,王忠宾,熊祥祥,等. 基于改进U−net网络模型的综采工作面煤岩识别方法[J]. 煤炭学报,2021,46(增刊1):578-589. DOI: 10.13225/j.cnki.jccs.2020.1011 SI Lei,WANG Zhongbin,XIONG Xiangxiang,et al. Coal-rock recognition method of fully-mechanized coal mining face based on improved U-net network model[J]. Journal of China Coal Society,2021,46(S1):578-589. DOI: 10.13225/j.cnki.jccs.2020.1011
[17] 熊祥祥. 基于深度学习的综采工作面煤岩识别方法研究[D]. 徐州:中国矿业大学,2020. XIONG Xiangxiang. Research on coal-rock recognition method of fully-mechanized coal mining face based on deep learning[D]. Xuzhou:China University of Mining and Technology,2020.
[18] 王星,高峰,陈吉,等. 基于GAN网络的煤岩图像样本生成方法[J]. 煤炭学报,2021,46(9):3066-3078. WANG Xing,GAO Feng,CHEN Ji,et al. Generative adversarial networks based sample generation of coal and rock images[J]. Journal of China Coal Society,2021,46(9):3066-3078.
[19] 王雅东. 基于CPS理念的采煤机自适应截割控制研究[D]. 阜新:辽宁工程技术大学,2022. WANG Yadong. Study on self-adaptive cutting control of shearer based on CPS[D]. Fuxin:Liaoning Technical University,2022.
[20] 樊坤. 基于记忆截割的采煤机自适应控制技术研究[D]. 焦作:河南理工大学,2021. FAN Kun. Research on adaptive control technology of shearer based on memory cutting[D]. Jiaozuo:Henan Polytechnic University,2021.
[21] 刘力涛,董淑棠. 基于BP神经网络的采煤机截割自适应调速控制[J]. 煤矿机械,2020,41(8):197-199. LIU Litao,DONG Shutang. Adaptive speed regulation control of shearer cutting based on BP neural network[J]. Coal Mine Machinery,2020,41(8):197-199.
[22] 付翔,王然风,赵阳升. 液压支架群组跟机推进行为的智能决策模型[J]. 煤炭学报,2020,45(6):2065-2077. FU Xiang,WANG Ranfeng,ZHAO Yangsheng. Intelligent decision-making model on the of hydraulic supports group advancing behavior to follow shearer[J]. Journal of China Coal Society,2020,45(6):2065-2077.
[23] 张锦涛,付翔,王然风,等. 智采工作面中部液压支架集群自动化后人工调控决策模型[J]. 工矿自动化,2022,48(10):20-25. ZHANG Jintao,FU Xiang,WANG Ranfeng,et al. Manual regulation and control decision model of middle hydraulic support cluster automation in the intelligent working face[J]. Journal of Mine Automation,2022,48(10):20-25.
[24] 贾思锋,付翔,王然风,等. 液压支架时空区域支护质量动态评价[J]. 工矿自动化,2022,48(10):26-33,81. JIA Sifeng,FU Xiang,WANG Ranfeng,et al. Dynamic evaluation of support quality of hydraulic support in space-time region[J]. Journal of Mine Automation,2022,48(10):26-33,81.
[25] 王学文,李素华,谢嘉成,等. 机器人运动学与时序预测融合驱动的刮板输送机调直方法[J]. 煤炭学报,2021,46(2):652-666. DOI: 10.13225/j.cnki.jccs.XR20.1897 WANG Xuewen,LI Suhua,XIE Jiacheng,et al. Straightening method of scraper conveyor driven by robot kinematics and time series prediction[J]. Journal of China Coal Society,2021,46(2):652-666. DOI: 10.13225/j.cnki.jccs.XR20.1897
[26] 付翔,王然风. 基于意识−情感−智能三位一体的煤矿供液过程控制[J]. 智能系统学报,2018,13(4):640-649. FU Xiang,WANG Ranfeng. Hydraulic fluid supply process control of coal mine based on consciousness,emotion,and intelligence[J]. CAAI Transactions on Intelligent Systems,2018,13(4):640-649.
[27] 付翔,王然风,赵阳升. 工作面支架液压系统仿真与稳压供液技术[J]. 煤炭学报,2018,43(5):1471-1478. DOI: 10.13225/j.cnki.jccs.2017.1143 FU Xiang,WANG Ranfeng,ZHAO Yangsheng. Investigation of hydraulic system simulation and fluid feeding technology with steady pressure of working face supports[J]. Journal of China Coal Society,2018,43(5):1471-1478. DOI: 10.13225/j.cnki.jccs.2017.1143
[28] 付翔,王然风. 工作面供液系统与液压支架协同自适应控制模型设计[J]. 采矿与岩层控制工程学报,2020,2(3):90-98. FU Xiang,WANG Ranfeng. Cooperative self-adaptive control model of fluid feeding system and hydraulic supports in working face[J]. Journal of Mining and Strata Control Engineering,2020,2(3):90-98.
[29] 付翔,王然风,赵阳升,等. 基于交叠协同逻辑的液压支架运行自适应稳压供液控制方法[J]. 煤炭学报,2020,45(5):1891-1900. FU Xiang,WANG Ranfeng,ZHAO Yangsheng,et al. Self-adaptive control method of fluid feeding with steady pressure for hydraulic support based on overlapping synergetic logic[J]. Journal of China Coal Society,2020,45(5):1891-1900.
[30] WANG Pengjiang,SHEN Yang,LI Rui,et al. Multisensor information-based adaptive control method for cutting head speed of roadheader[J]. Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2021,235(11):1941-1955.
[31] 宗凯,符世琛,吴淼,等. 基于GA−BP网络的掘进机截割臂摆速控制策略与仿真[J]. 煤炭学报,2021,46(增刊1):511-519. DOI: 10.13225/j.cnki.jccs.2020.1022 ZONG Kai,FU Shichen,WU Miao,et al. Simulation of control strategy for swing speed of roadheader's cutting arm based on GA-BP network[J]. Journal of China Coal Society,2021,46(S1):511-519. DOI: 10.13225/j.cnki.jccs.2020.1022
[32] ZHANG Deyi,LIU Songyong,JIA Xinqing,et al. Full coverage cutting path planning of robotized roadheader to improve cutting stability of the coal lane cross-section containing gangue[J]. Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2022,236(1):579-592.
[33] WANG Suyu,WU Miao. Cutting trajectory planning of sections with complex composition for roadheader[J]. Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2019,233(4):1441-1452.
[34] 沈显庆,王贺,马志鹏,等. 基于栅格法与改进A*算法的掘进机截割轨迹规划[J]. 黑龙江科技大学学报,2021,31(5):642-647. DOI: 10.3969/j.issn.2095-7262.2021.05.016 SHEN Xianqing,WANG He,MA Zhipeng,et al. Cutting trajectory planning of roadheader based on raster method and improved A* algorithm[J]. Journal of Heilongjiang University of Science and Technology,2021,31(5):642-647. DOI: 10.3969/j.issn.2095-7262.2021.05.016
[35] 王苏彧,马登成,任泽,等. 悬臂式掘进机断面成型轨迹多目标优化方法研究[J]. 仪器仪表学报,2021,41(8):183-192. WANG Suyu,MA Dengcheng,REN Ze,et al. A multi-objective optimization method for cantilever roadheader section forming trajectory[J]. Chinese Journal of Scientific Instrument,2021,41(8):183-192.
[36] 乔佳伟. 基于机器视觉的煤矿井下锚护作业钢带孔识别研究[D]. 北京:煤炭科学研究总院,2022. QIAO Jiawei. Research on the identification of steel belt holes for underground anchoring operations in coal mines based on machine vision[D]. Beijing:China Coal Research Institute,2022.
[37] 张夫净,王宏伟,王浩然,等. 煤矿巷道支护钢带锚孔智能识别与定位[J]. 工矿自动化,2022,48(10):76-81. DOI: 10.13272/j.issn.1671-251x.2022080070 ZHANG Fujing,WANG Hongwei,WANG Haoran,et al. Intelligent identification and positioning of steel belt anchor hole in coal mine roadway support[J]. Journal of Mine Automation,2022,48(10):76-81. DOI: 10.13272/j.issn.1671-251x.2022080070
[38] 宁小亮. 基于多源信息融合的煤与瓦斯突出动态预警模型[J]. 矿业安全与环保,2020,47(3):1-5,16. NING Xiaoliang. Dynamic early warning model of coal and gas outburst based on multi-source information fusion[J]. Mining Safety & Environmental Protection,2020,47(3):1-5,16.
[39] YOU Mengjie,LI Shuang,LI Dingwei,et al. Applications of artificial intelligence for coal mine gas risk assessment[J]. Safety Science,2021,143. DOI: 10.1016/j.ssci.2021.105420.
[40] 曹超凡. 基于LSTM的煤矿底板突水预警模型研究与应用[D]. 西安:西安建筑科技大学,2017. CAO Chaofan. Research and application of forecasting model for coal mine water inrush based on LSTM[D]. Xi'an:Xi'an University of Architecture and Technology,2017.
[41] 李兴莉,蔡红梅. 基于GA−BP神经网络的矿井突水判别数学模型研究[J]. 煤炭技术,2019,38(5):121-123. LI Xingli,CAI Hongmei. Research on mine water inrush discriminating mathematical model based on GA-BP neural network[J]. Coal Technology,2019,38(5):121-123.
[42] 邓军,王志强,王伟峰,等. 基于LSTM−AE−OCSVM的带式输送机火灾监测隐患识别技术[J]. 煤炭技术,2023,42(1):225-229. DENG Jun,WANG Zhiqiang,WANG Weifeng,et al. Hidden danger identification technology of belt conveyor fire monitoring based on LSTM-AE-OCSVM[J]. Coal Technology,2023,42(1):225-229.
[43] 来兴平,万培烽,单鹏飞,等. 基于免疫粒子群混合算法优化BP网络的矿压预测方法[J]. 西安科技大学学报,2023,43(1):1-8. LAI Xingping,WAN Peifeng,SHAN Pengfei,et al. Mine pressure prediction method based on immune algorithm-particle swarm optimization BP network[J]. Journal of Xi'an University of Science and Technology,2023,43(1):1-8.
[44] 赵毅鑫,杨志良,马斌杰,等. 基于深度学习的大采高工作面矿压预测分析及模型泛化[J]. 煤炭学报,2020,45(1):54-65. ZHAO Yixin,YANG Zhiliang,MA Binjie,et al. Deep learning prediction and model generalization of ground pressure for deep longwall face with large mining height[J]. Journal of China Coal Society,2020,45(1):54-65.
[45] 陈结,杜俊生,蒲源源,等. 冲击地压“双驱动”智能预警架构与工程应用[J]. 煤炭学报,2022,47(2):791-806. CHEN Jie,DU Junsheng,PU Yuanyuan,et al. "Dual-driven" intelligent pre-warning framework of the coal burst disaster in coal mine and its engineering application[J]. Journal of China Coal Society,2022,47(2):791-806.
[46] 崔峰,何仕凤,来兴平,等. 基于相空间重构与深度学习的冲击地压矿井时间序列b值趋势研究[J]. 煤炭学报,2023,48(5):2022-2034. CUI Feng,HE Shifeng,LAI Xingping,et al. Trend of time sequence b value of rock burst mine based on phase space reconstruction and deep learning[J]. Journal of China Coal Society,2023,48(5):2022-2034.
[47] 何生全,何学秋,宋大钊,等. 冲击地压多参量集成预警模型及智能判识云平台[J]. 中国矿业大学学报,2022,51(5):850-862. DOI: 10.3969/j.issn.1000-1964.2022.5.zgkydxxb202205003 HE Shengquan,HE Xueqiu,SONG Dazhao,et al. Multi-parameter integrated early warning model and an intelligent identification cloud platform of rockburst[J]. Journal of China University of Mining & Technology,2022,51(5):850-862. DOI: 10.3969/j.issn.1000-1964.2022.5.zgkydxxb202205003
[48] 程德强,钱建生,郭星歌,等. 煤矿安全生产视频AI识别关键技术研究综述[J]. 煤炭科学技术,2023,51(2):349-365. CHENG Deqiang,QIAN Jiansheng,GUO Xingge,et al. Review on key technologies of AI recognition for videos in coal mine[J]. Coal Science and Technology,2023,51(2):349-365.
[49] 李国民,章鳌,贺耀宜,等. 智能矿井多元监控数据集成关键技术研究[J]. 工矿自动化,2022,48(8):127-130,146. LI Guomin,ZHANG Ao,HE Yaoyi,et al. Research on key technologies of multi-element monitoring data integration in intelligent mine[J]. Journal of Mine Automation,2022,48(8):127-130,146.
[50] 谭章禄,王美君. 智慧矿山数据治理概念内涵、发展目标与关键技术[J]. 工矿自动化,2022,48(5):6-14. TAN Zhanglu,WANG Meijun. Research on the concept connotation,development goal and key technologies of data governance for smart mine[J]. Journal of Mine Automation,2022,48(5):6-14.
[51] 温亮,李丹宁. 基于EtherNet/IP的井工煤矿数据治理研究[J]. 煤炭科学技术,2022,50(增刊1):227-232. WEN Liang,LI Danning. Research on data management of coal mine based on EtherNet/IP[J]. Coal Science and Technology,2022,50(S1):227-232.
[52] 乔伟,靳德武,王皓,等. 基于云服务的煤矿水害监测大数据智能预警平台构建[J]. 煤炭学报,2020,45(7):2619-2627. QIAO Wei,JIN Dewu,WANG Hao,et al. Development of big data intelligent early warning platform for coal mine water hazard monitoring based on cloud service[J]. Journal of China Coal Society,2020,45(7):2619-2627.
[53] 夏向学,晏涛,连会青,等. 基于改进DK算法的煤矿水害逃生三维仿真平台研究[J]. 煤炭技术,2022,41(10):203-206. DOI: 10.13301/j.cnki.ct.2022.10.048 XIA Xiangxue,YAN Tao,LIAN Huiqing,et al. Research on 3D simulation platform of coal mine water disaster escape based on improved DK algorithm[J]. Coal Technology,2022,41(10):203-206. DOI: 10.13301/j.cnki.ct.2022.10.048
[54] 王恩元,李忠辉,李保林,等. 煤矿瓦斯灾害风险隐患大数据监测预警云平台与应用[J]. 煤炭科学技术,2022,50(1):142-150. WANG Enyuan,LI Zhonghui,LI Baolin,et al. Big data monitoring and early warning cloud platform for coal mine gas disaster risk and potential danger and its application[J]. Coal Science and Technology,2022,50(1):142-150.
[55] 周兰姜,李正东,罗玉平. 基于无线传感器网络的瓦斯浓度监测系统的硬件设计[J]. 传感技术学报,2007,20(11):2522-2525. DOI: 10.3969/j.issn.1004-1699.2007.11.036 ZHOU Lanjiang,LI Zhengdong,LUO Yuping. Hardware platform of gas density monitor system based on wireless sensor network[J]. Chinese Journal of Sensors and Actuators,2007,20(11):2522-2525. DOI: 10.3969/j.issn.1004-1699.2007.11.036
[56] 窦林名,王盛川,巩思园,等. 冲击矿压风险智能判识与监测预警云平台[J]. 煤炭学报,2020,45(6):2248-2255. DOI: 10.13225/j.cnki.jccs.ZN20.0318 DOU Linming,WANG Shengchuan,GONG Siyuan,et al. Cloud platform of rock-burst intelligent risk assessment and multi-parameter monitoring and early warning[J]. Journal of China Coal Society,2020,45(6):2248-2255. DOI: 10.13225/j.cnki.jccs.ZN20.0318
[57] 郑林江,周龙辉,王杰,等. 基于物联网的煤矿粉尘监测云服务平台设计[J]. 煤炭科学技术,2019,47(7):164-170. DOI: 10.13199/j.cnki.cst.2019.07.020 ZHENG Linjiang,ZHOU Longhui,WANG Jie,et al. Design of coal mine dust monitoring cloud service platform based on Internet of things[J]. Coal Science and Technology,2019,47(7):164-170. DOI: 10.13199/j.cnki.cst.2019.07.020
[58] 王永,刘金海,王颜亮,等. 煤矿冲击地压多参量监测预警平台研究[J]. 煤炭工程2018,50(4):19-21. WANG Yong,LIU Jinhai,WANG Yanliang,et al. Study on multi-parameter monitoring and warning platform for rock burst[J]. Coal Engineering,2018,50(4):19-21.
-
期刊类型引用(6)
1. 王建风, 靳远志, 张勇, 王永振, 和佳聪. 立井提升系统刚性罐道故障诊断方法. 工矿自动化. 2025(06) 本站查看
2. 陈晓鹏,谢丽君,陈享姿. 基于无线传输的刚性罐道在线监测系统设计. 无线互联科技. 2024(02): 34-37 . 百度学术
3. 马利芬,王伟,池耀磊,朱宏伟,韩磊. 基于噪声数据驱动CNN和LSTM的罐道故障诊断. 无线电工程. 2024(04): 1043-1052 . 百度学术
4. 李臻. 基于提升小波-SVD差分谱的煤机设备故障诊断. 煤矿机械. 2024(10): 169-173 . 百度学术
5. 李刚,刘世林. 基于EMD与小波变换的微机型继电保护装置干扰信号识别. 电气技术与经济. 2024(10): 308-311 . 百度学术
6. 王鲁娜,杜洪波,朱立军. 基于流形正则的堆叠胶囊自编码器优化算法. 广西师范大学学报(自然科学版). 2023(02): 76-85 . 百度学术
其他类型引用(7)