留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

调制模型预测控制在基于STATCOM的煤矿电能质量治理的应用研究

张宝军 孟庆林 刘鹏 纪祥 刘伟 张德正 鹿伟强

张宝军,孟庆林,刘鹏,等. 调制模型预测控制在基于STATCOM的煤矿电能质量治理的应用研究[J]. 工矿自动化,2023,49(10):17-25.  doi: 10.13272/j.issn.1671-251x.18087
引用本文: 张宝军,孟庆林,刘鹏,等. 调制模型预测控制在基于STATCOM的煤矿电能质量治理的应用研究[J]. 工矿自动化,2023,49(10):17-25.  doi: 10.13272/j.issn.1671-251x.18087
ZHANG Baojun, MENG Qinglin, LIU Peng, et al. Research on the application of modulated model predictive control in coal mine power quality management based on STATCOM[J]. Journal of Mine Automation,2023,49(10):17-25.  doi: 10.13272/j.issn.1671-251x.18087
Citation: ZHANG Baojun, MENG Qinglin, LIU Peng, et al. Research on the application of modulated model predictive control in coal mine power quality management based on STATCOM[J]. Journal of Mine Automation,2023,49(10):17-25.  doi: 10.13272/j.issn.1671-251x.18087

调制模型预测控制在基于STATCOM的煤矿电能质量治理的应用研究

doi: 10.13272/j.issn.1671-251x.18087
基金项目: 国家能源集团2022年第一批科技项目(GJNY-22-132);天地科技股份有限公司科技创新创业资金专项项目(2023-TD-ZD001-006)。
详细信息
    作者简介:

    张宝军(1978—),男,陕西榆林人,工程师,现从事煤矿机电智能化方面的工作, E-mail:10015325@shenhua.com

    通讯作者:

    张德正(1988—),男,山东济南人,工程师,主要从事煤矿供电智能化方面的工作,E-mail:zhangdezheng123@126.com

  • 中图分类号: TD608

Research on the application of modulated model predictive control in coal mine power quality management based on STATCOM

  • 摘要: 大量电力电子设备及非线性负载接入煤矿电网,使得煤矿电网中存在大量电流谐波及无功功率,严重危害煤矿电网电能质量。传统电能质量治理策略大多采用比例积分(PI)调节器对静止同步补偿器(STATCOM)进行控制,以实现谐波抑制和无功补偿,但其参数难以调节且动态响应慢。针对上述问题,提出了一种基于调制模型预测控制(M2PC)的STATCOM控制策略。首先,采用ipiq法检测出电网中的谐波电流和无功电流作为M2PC的参考电流;其次,根据参考电流及STATCOM数学模型计算出每个扇区的2个有效矢量和零矢量的占空比及扇区代价函数;然后,通过最小化代价函数得到最佳扇区和该扇区所对应的2个最佳有效矢量和零矢量的占空比;最后,根据空间矢量调制(SVM)方式分配开关脉冲,实现固定的开关频率,从而控制STATCOM发出补偿电流,以抵消电网中的谐波电流与无功电流。仿真和实验结果表明:投入基于M2PC的STATCOM前,电网侧电流畸变严重,电网侧无功功率波动大,电网侧功率因数存在波动且小于1;投入基于M2PC的STATCOM后,由于STATCOM补偿了电网侧谐波电流,使得电网侧电流总谐波畸变率(THD)大幅度降低,且由于STATCOM补偿了负载所需无功功率,电网侧无功功率基本保持为0,电网侧功率因数稳定为1,有效改善了电能质量。

     

  • 图  1  STATCOM拓扑

    Figure  1.  Topology of static synchronous compensator

    图  2  两电平STATCOM扇区及开关矢量分布

    Figure  2.  Sector and switching vector distribution of two-level ofstatic synchronous compensator

    图  3  M2PC控制原理

    Figure  3.  Control principle of modulated model predictive control

    图  4  基于M2PC的STATCOM控制原理

    Figure  4.  Control principle of static synchronous compensator based on modulated model predictive control

    图  5  基于M2PC的STATCOM控制流程

    Figure  5.  Control process of static synchronous compensator based on modulated model predictive control

    图  6  M2PC脉冲分配(扇区1)

    Figure  6.  Pulse distribution of modulated model predictive control(sector 1)

    图  7  投入STATCOM前后电压、电流仿真波形

    Figure  7.  Simulation waveforms of voltage and current before and after adopting static synchronous compensator

    图  8  投入STATCOM前后电网侧电流谐波仿真波形

    Figure  8.  Simulation waveforms of grid side current harmonics before and after adopting static synchronous compensator

    图  9  投入STATCOM前后电网侧有功功率和无功功率仿真波形

    Figure  9.  Simulation waveforms of grid side active and reactive power before and after adopting static synchronous compensator

    图  10  投入STATCOM后直流侧电压仿真波形

    Figure  10.  Simulation waveforms of DC-side voltage after adopting static synchronous compensator

    图  11  实验平台原理

    Figure  11.  Principle of experimental platform

    图  12  投入STATCOM前后电流、功率实验波形

    Figure  12.  Experimental waveforms of current and power before and after adopting static synchronous compensator

    图  13  投入STATCOM前后电网侧电流谐波实验波形

    Figure  13.  Experimental waveforms of grid side current harmonics before and after adopting static synchronous compensator

    图  14  投入STATCOM后直流侧电压实验波形

    Figure  14.  Experimental waveforms of DC-side voltage after adopting static synchronous compensator

    图  15  STATCOM发出的无功功率实验波形

    Figure  15.  Experimental waveforms of reactive power sent by static synchronous compensator

    图  16  电网侧功率因数实验波形

    Figure  16.  Experimental waveforms of grid side power factor

    表  1  STATCOM开关状态及开关矢量

    Table  1.   Switching status and switching vector ofstatic synchronous compensator

    SaSbSc开关矢量
    000v0=0
    100v1=2Vdc/3
    110v2=Vdc/3+j$ \sqrt{3} $Vdc/3
    010v3=−Vdc/3+j$ \sqrt{3} $Vdc/3
    011v4=−2Vdc/3
    001v5=−Vdc/3−j$ \sqrt{3} $Vdc/3
    101v6=Vdc/3−j$ \sqrt{3} $Vdc/3
    111v7=0
    下载: 导出CSV

    表  2  仿真参数

    Table  2.   Simulation parameters

    参数
    电网线电压/V380
    滤波电感/mH2
    滤波电感阻值/Ω0.1
    直流侧电压/V600
    直流侧电容/μF2 200
    采样频率/kHz20
    开关频率/kHz10
    负载侧电阻/Ω20
    下载: 导出CSV

    表  3  实验参数

    Table  3.   Experimental parameters

    参数
    电网线电压/V380
    滤波电感/mH5
    滤波电阻/Ω0.1
    直流侧电压/V600
    直流侧电容/μF2 200
    采样频率/kHz20
    开关频率/kHz10
    负载侧电阻/Ω60
    下载: 导出CSV
  • [1] 王清亮,姚苗. 煤矿电能质量综合量化评价研究[J]. 工矿自动化,2015,41(2):42-46.

    WANG Qingliang,YAO Miao. Research of comprehensive quantitative evaluation of power quality of coal mine[J]. Industry and Mine Automation,2015,41(2):42-46.
    [2] 王毅颖. 煤矿电网多谐波源分散抑制和APFs接入点优化研究[D]. 北京:中国矿业大学(北京),2017.

    WANG Yiying. Optimization research on distributed suppressing harmonic sources and placements of APFs in coal mine power grid[D]. Beijing:China University of Mining and Technology-Beijing,2017.
    [3] 郭松梅. 煤矿电能质量综合治理研究[J]. 工矿自动化,2016,42(9):60-64.

    GUO Songmei. Research on power quality comprehensive treatment for coal mine[J]. Industry and Mine Automation,2016,42(9):60-64.
    [4] 杨磊. 董家河煤矿电能质量测试分析与治理研究[D]. 西安:西安科技大学,2018.

    YANG Lei. Research on test analysis and treatment on power quality of Dongjiahe Coal Mine[D]. Xi'an:Xi'an University of Science and Technology,2018.
    [5] 张淼,吴事煜,冯春寿,等. 一种新型谐振混合型有源电力滤波器[J]. 电力电子技术,2023,57(4):41-45. doi: 10.3969/j.issn.1000-100X.2023.04.010

    ZHANG Miao,WU Shiyu,FENG Chunshou,et al. A new resonant hybrid active power filter[J]. Power Electronics,2023,57(4):41-45. doi: 10.3969/j.issn.1000-100X.2023.04.010
    [6] 刘伟豪. 电网T型三电平静止无功补偿器的仿真与设计[J]. 电工技术,2018(19):41-44,47.

    LIU Weihao. Simulation and design of T type three level static var compensator in power grid[J]. Electric Engineering,2018(19):41-44,47.
    [7] 韩冰,张宁宇,胡昊明,等. 考虑UPFC实时控制策略的电网功率调节能力研究[J]. 电力工程技术,2018,37(1):1-7.

    HAN Bing,ZHANG Ningyu,HU Haoming,et al. Control capability analysis of unified power flow controller considering real-time control strategy[J]. Electric Power Engineering Technology,2018,37(1):1-7.
    [8] 祁琦,王宇,盛晓东,等. 基于串并联混合结构的动态电压恢复器研究[J]. 电工技术,2022(7):27-30.

    QI Qi,WANG Yu,SHENG Xiaodong,et al. Study on dynamic voltage restore based on series parallel hybrid structure[J]. Electric Engineering,2022(7):27-30.
    [9] 刘威,季振东,孙毅超,等. 基于双频功率回路的星形级联H桥STATCOM不平衡补偿研究[J]. 中国电机工程学报,2023,43(9):3527-3538.

    LIU Wei,JI Zhendong,SUN Yichao,et al. Research on unbalance current compensation of star-connected cascaded H-bridge STATCOM based on dual-frequency power loop[J]. Proceedings of the CSEE,2023,43(9):3527-3538.
    [10] 王明达,梁军,王广柱,等. 基于单星MMC的新型STATCOM及其控制策略[J]. 电力系统自动化,2015,39(18):108-113.

    WANG Mingda,LIANG Jun,WANG Guangzhu,et al. Control strategy of novel STATCOM based on modular multilevel converter with single-star configuration[J]. Automation of Electric Power Systems,2015,39(18):108-113.
    [11] 秦祥栋,罗朋,王占立. 井下 1 140 V级联STATCOM关键技术的研究[J]. 煤炭技术,2014,33(10):212-214.

    QIN Xiangdong,LUO Peng,WANG Zhanli. Research on underground 1 140 V cascade STATCOM key technologies[J]. Coal Technology,2014,33(10):212-214.
    [12] 赵建阳,张福民,龚博,等. 基于D−STATCOM 的煤矿供电系统功率平衡控制方法[J]. 煤炭学报,2017,42(增刊1):288-294.

    ZHAO Jianyang,ZHANG Fumin,GONG Bo,et al. Power balance control method based on D-STATCOM in coal mine power supply system[J]. Journal of China Coal Society,2017,42(S1):288-294.
    [13] 王烨,牟宪民,齐琛. 三相电流源型STATCOM 的无锁相环控制策略[J]. 电力系统保护与控制,2015,43(14):131-136.

    WANG Ye,MU Xianmin,QI Chen. A control strategy of three-phase current source converter based STATCOM without PLL[J]. Power System Protection and Control,2015,43(14):131-136.
    [14] 易桂平,胡仁杰,蒋玮,等. 电网电压不平衡对STATCOM的影响及抑制[J]. 电工技术学报,2014,29(6):238-247.

    YI Guiping,HU Renjie,JIANG Wei,et al. Influence of grid voltage unbalance on STATCOM and the countermeasure[J]. Transactions of China Electrotechnical Society,2014,29(6):238-247.
    [15] 孙朝霞,张明敏,张晖,等. 配电网储能型 DSTATCOM 电能质量综合补偿策略[J]. 电力系统及其自动化学报,2023,35(4):75-84.

    SUN Zhaoxia,ZHANG Mingmin,ZHANG Hui,et al. Comprehensive power quality compensation strategy for energy-storage-based DSTATCOM[J]. Proceedings of the CSU-EPSA,2023,35(4):75-84.
    [16] 於静,莫修权,徐楠. 矿山高压三电平ANPC变频器预测控制研究[J]. 工矿自动化,2016,42(10):85-90.

    YU Jing,MO Xiuquan,XU Nan. Research on predictive control for mine high-pressure three-level ANPC inverter[J]. Industry and Mine Automation,2016,42(10):85-90.
    [17] 刘春喜,田宝奇,刘志乐,等. NPC型三电平并网逆变器自适应模型预测控制[J]. 电力系统及其自动化学报,2023,35(1):143-151.

    LIU Chunxi,TIAN Baoqi,LIU Zhile,et al. Adaptive model predictive control for NPC-type three-level grid-connected inverter[J]. Proceedings of the CSU-EPSA,2023,35(1):143-151.
    [18] 王明金,苗长新,段森,等. 五电平级联H桥STATCOM改进模型预测电流控制[J]. 电力电子技术,2019,53(9):56-59.

    WANG Mingjin,MIAO Changxin,DUAN Sen,et al. Five-level cascade H-bridge STATCOM improved model predictive current control[J]. Power Electronics,2019,53(9):56-59.
    [19] 李帅虎,向振宇,彭寒梅,等. 基于模型预测控制的SVC与STATCOM协调控制器[J]. 电网技术,2019,43(11):4218-4224.

    LI Shuaihu,XIANG Zhenyu,PENG Hanmei,et al. SVC and STATCOM coordination controller based on model predictive control[J]. Power System Technology,2019,43(11):4218-4224.
    [20] 原亚雷,钊翔坤,徐高祥,等. 兼顾电压波动抑制的级联H桥STATCOM相间电压平衡控制策略[J]. 电网技术,2022,46(4):1494-1502.

    YUAN Yalei,ZHAO Xiangkun,XU Gaoxiang,et al. Clustered voltage balance control strategy of cascaded H-bridge STATCOM with suppressing DC voltage fluctuation[J]. Power System Technology,2022,46(4):1494-1502.
    [21] TARISCIOTTI L,ZANCHETTA P,WATSON A,et al. Modulated model predictive control (M2PC) for a 3-phase active front-end[C]. IEEE Energy Conversion Congress and Exposition,Denver,2013:1062-1069.
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  604
  • HTML全文浏览量:  62
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-20
  • 修回日期:  2023-10-13
  • 网络出版日期:  2023-10-23

目录

    /

    返回文章
    返回