Digital twin system architecture and key technology of following process for fully mechanized mining
-
摘要: 针对综采自动化跟机工艺设计和参数调试成本高、周期长、过程繁琐的问题,提出了综采跟机工艺数字孪生系统架构,从物理设备、虚实交互、孪生数据、机理模型、仿真算法和工艺应用等层面进行分析,并对跟机工艺数据传输和存储、跟机工艺历史回放、实时跟机工艺孪生演绎、跟机工艺预演仿真、跟机工艺指令调度等关键技术进行了详细描述。提出了综采跟机工艺数字孪生系统技术路线:通过万兆光纤环网+5G通信将采煤机工艺动作数据汇集到采煤机主机,将串行支架控制器发出的支架工艺动作数据汇集到电液控主机,对工艺数据按动作时序进行收集、归类、编码,作为工艺过程回放的数据源;同时,主机将实时上报的跟机工艺数据转发给三维数字孪生系统,在三维虚拟场景中孪生演绎跟机过程;在人机交互界面完成跟机工艺参数配置后,可在三维场景中预演综采跟机工艺过程;在实时开采过程中,汇集各类传感数据,结合预演无误的跟机工艺,系统统筹下发工艺调度指令,将支架控制器从决策者转变为执行者,克服因井下空间不足导致控制器算力有限的局限性。现场应用结果表明,综采跟机工艺数字孪生系统可为综采跟机工艺设计、参数配置、仿真测试提供技术参考,使跟机工艺开发周期由14 d缩短至1 d,跟机工艺设计修改更加便捷,综采工作面跟机自动化率提高到90%以上。Abstract: The process design and parameter debugging of automatic following machine for fully mechanized mining are costly, time-consuming and cumbersome. In order to solve the above problems, the digital twin system architecture of following process for fully mechanized mining is proposed. The study analyzes the aspects of physical equipment, virtual and real interaction, twin data, mechanism model, simulation algorithm and process application. The key technologies such as the transmission and storage of the following process data, the playback of the following process history, the real-time following process twin deduction, the rehearsal simulation of following process, and the instruction scheduling of following process are described in detail. The paper puts forward the technical roadmap of the digital twin system of following process for fully mechanized machining. Through 10 Gigabit optical fiber ring network+5G communication, the shearer process action data is collected to the shearer host. The support process action data sent by the serial support controller is collected to the electrohydraulic control host. The process data is collected, classified and coded according to the action sequence as the data source for the playback of the process. At the same time, the host computer forwards the real-time reported following process data to the 3D digital twin system. The twin system deduces the following process in the 3D virtual scene. After the following process parameters are configured on the human-computer interface, the following process for fully mechanized mining can be previewed in the 3D scene. During the real-time mining process, the system will collect all kinds of sensor data and issue process scheduling instructions in combination with the rehearsal of error-free following process. The support controller is changed from a decision-maker to an executor to overcome the limitation of the limited computing power of the controller due to the lack of underground space. The field application results show that the digital twin system can provide technical reference for the process design, parameter configuration and simulation test of following process for fully mechanized mining. The system can shorten the development cycle of the following process from 14 days to 1 day, making the modification of the following process design more convenient. The system improves the following automation rate in working face to more than 90%.
-
-
-
[1] 陈浮,于昊辰,卞正富,等. 碳中和愿景下煤炭行业发展的危机与应对[J]. 煤炭学报,2021,46(6):1808-1820. DOI: 10.13225/j.cnki.jccs.2021.0368 CHEN Fu,YU Haochen,BIAN Zhengfu,et al. How to handle the crisis of coal industry in China under the vision of carbon neutrality[J]. Journal of China Coal Society,2021,46(6):1808-1820. DOI: 10.13225/j.cnki.jccs.2021.0368
[2] 王峰. 综采无人工作面自动化开采技术研究与应用[J]. 工矿自动化,2015,41(7):5-9. DOI: 10.13272/j.issn.1671-251x.2015.07.002 WANG Feng. Research and application of automatic mining technology of unmanned fully-mechanized coal mining face[J]. Industry and Mine Automation,2015,41(7):5-9. DOI: 10.13272/j.issn.1671-251x.2015.07.002
[3] 刘清,韩秀琪,徐兰欣,等. 综采工作面采煤机和液压支架协同控制技术[J]. 工矿自动化,2020,46(5):43-48. DOI: 10.13272/j.issn.1671-251x.17520 LIU Qing,HAN Xiuqi,XU Lanxin,et al. Cooperative control technology of shear and hydraulic support on fully-mechanized coal mining face[J]. Industry and Mine Automation,2020,46(5):43-48. DOI: 10.13272/j.issn.1671-251x.17520
[4] 高卫勇,张敏娟. 综采工作面液压支架跟机自动化工艺研究[J]. 工矿自动化,2018,44(11):14-17. DOI: 10.13272/j.issn.1671-251x.2018050040 GAO Weiyong,ZHANG Minjuan. Research on following automation technology of hydraulic support on fully-mechanized coal mining face[J]. Industry and Mine Automation,2018,44(11):14-17. DOI: 10.13272/j.issn.1671-251x.2018050040
[5] 王虹,尤秀松,李首滨,等. 基于遗传算法与BP神经网络的支架跟机自动化研究[J]. 煤炭科学技术,2021,49(1):272-277. DOI: 10.13199/j.cnki.cst.2021.01.024 WANG Hong,YOU Xiusong,LI Shoubin,et al. Research on automation of support based on genetic algorithm and BP neural network[J]. Coal Science and Technology,2021,49(1):272-277. DOI: 10.13199/j.cnki.cst.2021.01.024
[6] 李骏,林福严. 跟机自动化中采煤机自动控制方法研究[J]. 工矿自动化,2014,40(2):1-4. LI Jun,LIN Fuyan. Research of automatic control method of shearer in machinery-tracked automation[J]. Industry and Mine Automation,2014,40(2):1-4.
[7] 付翔,王然风,赵阳升. 液压支架群组跟机推进行为的智能决策模型[J]. 煤炭学报,2020,45(6):2065-2077. DOI: 10.13225/j.cnki.jccs.zn20.0339 FU Xiang,WANG Ranfeng,ZHAO Yangsheng. Intelligent decision-making model on the of hydraulic supports group advancing behavior to follow shearer[J]. Journal of China Coal Society,2020,45(6):2065-2077. DOI: 10.13225/j.cnki.jccs.zn20.0339
[8] GRIEVES M, VICKERS J. Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems[M]//KAHLEN J, FLUMERFELT S, ALVES A. Transdisciplinary perspectives on complex systems. Berlin: Springer-Verlag, 2017.
[9] 刘大同,郭凯,王本宽,等. 数字孪生技术综述与展望[J]. 仪器仪表学报,2018,39(11):1-10. DOI: 10.19650/j.cnki.cjsi.J1804099 LIU Datong,GUO Kai,WANG Benkuan,et al. Summary and perspective survey on digital twin technology[J]. Chinese Journal of Scientific Instrument,2018,39(11):1-10. DOI: 10.19650/j.cnki.cjsi.J1804099
[10] 丁恩杰,俞啸,夏冰,等. 矿山信息化发展及以数字孪生为核心的智慧矿山关键技术[J]. 煤炭学报,2022,47(1):564-578. DING Enjie,YU Xiao,XIA Bing,et al. Development of mine informatization and key technologies of intelligent mines[J]. Journal of China Coal Society,2022,47(1):564-578.
[11] 葛世荣,张帆,王世博,等. 数字孪生智采工作面技术架构研究[J]. 煤炭学报,2020,45(6):1925-1936. DOI: 10.13225/j.cnki.jccs.ZN20.0327 GE Shirong,ZHNAG Fan,WANG Shibo,et al. Digital twin for smart coal mining workface:Technological frame and construction[J]. Journal of China Coal Society,2020,45(6):1925-1936. DOI: 10.13225/j.cnki.jccs.ZN20.0327
[12] 张帆,葛世荣,李闯. 智慧矿山数字孪生技术研究综述[J]. 煤炭科学技术,2020,48(7):168-176. DOI: 10.13199/j.cnki.cst.2020.07.017 ZHANG Fan,GE Shirong,LI Chuang. Research summary on digital twin technology for smart mines[J]. Coal Science and Technology,2020,48(7):168-176. DOI: 10.13199/j.cnki.cst.2020.07.017
[13] 苗丙,葛世荣,郭一楠,等. 煤矿数字孪生智采工作面系统构建[J]. 矿业科学学报,2022,7(2):143-153. DOI: 10.19606/j.cnki.jmst.2022.02.001 MIAO Bing,GE Shirong,GUO Yinan,et al. Construction of digital twin system for intelligent mining in coal mines[J]. Journal of Mining Science and Technology,2022,7(2):143-153. DOI: 10.19606/j.cnki.jmst.2022.02.001
[14] 谢嘉成,王学文,杨兆建. 基于数字孪生的综采工作面生产系统设计与运行模式[J]. 计算机集成制造系统,2019,25(6):1381-1391. DOI: 10.13196/j.cims.2019.06.007 XIE Jiacheng,WANG Xuewen,YANG Zhaojian. Design and operation mode of production system of fully mechanized coal mining face based on digital twin theory[J]. Computer Integrated Manufacturing Systems,2019,25(6):1381-1391. DOI: 10.13196/j.cims.2019.06.007
[15] XIE Jiacheng,WANG Xuewen,YANG Zhaojian. Virtual monitoring method for hydraulic supports based on digital twin theory[J]. Mining Technology,2019,128(2):77-87. DOI: 10.1080/25726668.2019.1569367
[16] LI Juanli,LIU Yang,XIE Jiacheng,et al. Cutting path planning technology of shearer based on virtual reality[J]. Applied Sciences,2020,10(3):771. DOI: 10.3390/app10030771
[17] LI Suhua,XIE Jiacheng,REN Fang,et al. Virtual straightening of scraper conveyor based on the position and attitude solution of industrial robot model[J]. International Journal of Coal Science & Technology,2021,8(5):1149-1170.
[18] 张超,张旭辉,毛清华,等. 煤矿智能掘进机器人数字孪生系统研究及应用[J]. 西安科技大学学报,2020,40(5):813-822. DOI: 10.13800/j.cnki.xakjdxxb.2020.0509 ZHANG Chao,ZHANG Xuhui,MAO Qinghua,et al. Research and application of digital twin system for intelligent tunneling equipment in coal mine[J]. Journal of Xi'an University of Science and Technology,2020,40(5):813-822. DOI: 10.13800/j.cnki.xakjdxxb.2020.0509
[19] 张旭辉,张超,杨文娟,等. 数字孪生驱动采掘工作面远程控制技术分析及发展趋势[J]. 智能矿山,2020,1(1):112-124. ZHANG Xuhui,ZHANG Chao,YANG Wenjuan,et al. Current status analysis and development trend of remote control technology of digital twin-driven mining face[J]. Journal of Intelligent Mine,2020,1(1):112-124.
[20] 张旭辉,张超,王妙云,等. 数字孪生驱动的悬臂式掘进机虚拟操控技术[J]. 计算机集成制造系统,2021,27(6):1617-1628. DOI: 10.13196/j.cims.2021.06.008 ZHANG Xuhui,ZHANG Chao,WANG Miaoyun,et al. Digital twin-driven virtual control technology of cantilever roadheader[J]. Computer Integrated Manufacturing Systems,2021,27(6):1617-1628. DOI: 10.13196/j.cims.2021.06.008
[21] 丁华,杨亮亮,杨兆建,等. 数字孪生与深度学习融合驱动的采煤机健康状态预测[J]. 中国机械工程,2020,31(7):815-823. DOI: 10.3969/j.issn.1004-132X.2020.07.007 DING Hua,YANG Liangliang,YANG Zhaojian,et al. Health prediction of shearers driven by digital twin and deep learning[J]. China Mechanical Engineering,2020,31(7):815-823. DOI: 10.3969/j.issn.1004-132X.2020.07.007
-
期刊类型引用(5)
1. 张凯. 液压支架自动化后人工调控策略推荐系统. 山西焦煤科技. 2024(02): 33-36+41 . 百度学术
2. 刘萌,付翔,姜玉龙,刘彬,杨宇琪,秦一凡,孙岩. 液压支架姿态数字孪生精准快速映射方法. 工矿自动化. 2024(06): 136-141+158 . 本站查看
3. 虞婧,魏红磊,周亘儒,孟龙,陈浩. 基于数字孪生技术的低碳选煤厂能源监控平台应用研究. 煤炭工程. 2024(12): 12-18 . 百度学术
4. 王栎淇,范维,陈传军,李森,付文阳. 基于实时数据驱动的车间输送线数字孪生系统研究与实现. 制造业自动化. 2023(08): 171-177 . 百度学术
5. 鲍久圣,张可琨,王茂森,阴妍,杨磊,葛世荣. 矿山数字孪生MiDT:模型架构、关键技术及研究展望. 绿色矿山. 2023(01): 166-177 . 百度学术
其他类型引用(1)