Fatigue state perception in underground production operation practice
-
摘要: 煤矿事故中人为因素引发的事故主要由井下作业人员疲劳和注意力不集中引发的误操作造成。现有基于生理信号或眼部图像的人员疲劳检测方法存在实施复杂、适应性差、准确率低、易漏报和误报等问题。针对上述问题,设计了一种基于头部姿态监测的井下人员疲劳状态感知装置。当井下人员处于疲劳状态时,会产生头部下垂动作,大脑通过耳蜗感知到头部失去平衡,为了恢复平衡和保持清醒,大脑会控制颈部进行恢复性抬头动作,从而形成一个周期性点头动作。在安全帽上安装九轴姿态传感器采集角速度、加速度、磁场强度,通过数据融合得到头部姿态数据,利用四元数法解算头部姿态角,并根据头部姿态角捕捉点头动作,当单位时间内点头动作占比超出阈值,则判断人员处于疲劳状态,发出声光预警,并通过无线方式向地面监控终端发送预警信号。实验结果表明,该装置能准确获取头部姿态角,捕捉疲劳特征动作,并有效判断井下人员是否处于疲劳状态。该装置具有体积小、质量轻、功耗低、易于实施等特点,可为生产操作实践中操作疲劳监测提供技术借鉴。Abstract: The accidents caused by human factors in coal mine accidents are mainly caused by misoperation caused by fatigue and inattention of underground operating personnel. The existing personnel fatigue detection method based on physiological signals or eye images has the problems of complex implementation, poor adaptability, low accuracy and easy false negatives and false positives. In order to solve the above problems, a perception device of fatigue state of underground personnel based on head posture monitoring is designed. When the underground personnel is in a fatigue state, the head droop motion will occur, and the brain senses the head imbalance through the cochlea. In order to restore balance and keep awake, the brain will control the neck to carry out recovery head-raising motion, thus forming a periodic nodding motion. A nine-axis posture sensor is installed on the safety helmet to collect angular velocity, acceleration and magnetic field strength, and head posture data is obtained through data fusion. The head posture angle is calculated by using the quaternion method, and nodding motion is captured according to the head posture angle. When the proportion of nodding motion in unit time exceeds a threshold value, it is judged that the personnel is in a fatigue state, voice and light early warning occurs and an early warning signal is sent to a monitoring terminal on the ground through a wireless mode. The experimental results show that the device can accurately obtain the head posture angle, capture the fatigue characteristic motion, and judge whether the underground personnel is in a fatigue state effectively. The device has the characteristics of small volume, light weight, low power consumption and easy implementation, which can provide technical reference for operation fatigue monitoring in production operation practice.
-
Key words:
- fatigue state perception /
- head posture /
- nodding motion /
- nine-axis posture sensor /
- quaternion
-
[1] 兰建义.煤矿人因失误事故分析的关键影响因素危险识别研究[D].焦作:河南理工大学,2015.LAN Jianyi.Study on the key affecting factors risk identification of coal mine human error accident analysis[D].Jiaozuo:Henan Polytechnic University,2015. [2] 孙林辉,章艺蒙,崔凯,等.煤矿井下作业工人工作倦怠与事故倾向性研究[J].技术与创新管理,2016,37(2):158-162.SUN Linhui,ZHANG Yimeng,CUI Kai,et al.The research of job burnout with accident proneness among coal mine workers[J].Technology and Innovation Management,2016,37(2):158-162. [3] 董建梁,李鹏,马晨光.基于脑电检测的煤矿矿工井下疲劳作业监测研究[J].中国科技信息,2014(16):82-83.DONG Jianliang,LI Peng,MA Chenguang.Research on underground fatigue monitoring of coal miners based on EEG detection[J].China Science and Technology Information,2014(16):82-83. [4] 耿磊,袁菲,肖志涛,等.基于面部行为分析的驾驶员疲劳检测方法[J].计算机工程,2018,44(1):274-279.GENG Lei,YUAN Fei,XIAO Zhitao,et al.Driver fatigue detection method based on facial behavior analysis[J].Computer Engineering,2018,44(1):274-279. [5] DINGES D F,GRACE R.PERCLOS:a valid psychophysiological measure of alertness as assessed by psychomotor vigilance[J].Tech Brief,1998:26-29. [6] 孔丽丽,易春求.矿用智能安全头盔的设计[J].中国矿业,2020,29(12):95-98.KONG Lili,YI Chunqiu.Design of mine intelligent safety helmet[J].China Mining Magazine,2020,29(12):95-98. [7] FERRARIO V F,SFORZA C,SERRAO G,et al.Active range of motion of the head and cervical spine:a three-dimensional investigation in healthy young adults[J].Journal of Orthopaedic Research,2002,20(1):122-129. [8] 刘敏.基于头部特征和姿态估计的疲劳驾驶检测技术的研究[D].上海:东华大学,2019.LIU Min.Research on fatigue driving detection technology based on head feature and attitude estimation[D].Shanghai:Donghua University,2019. [9] 仝泽友,冯仕民,侯晓晴,等.基于安全帽佩戴检测的矿山人员违规行为研究[J].电子科技,2019,32(9):26-31.TONG Zeyou,FENG Shimin,HOU Xiaoqing,et al.Recognition of underground miners' rule-violated behavior based on safety helmet detection[J].Electronic Science and Technology,2019,32(9):26-31. [10] 孙瑜,孙林辉,张巍,等.基于作业环境分析的矿用安全帽改善研究[J].工业安全与环保,2017,43(5):98-100.SUN Yu,SUN Linhui,ZHANG Wei,et al.The improvement study of mining safety helmets based on the analysis of working environment[J].Industrial Safety and Environmental Protection,2017,43(5):98-100. [11] 孙林辉,孙瑜,孙龙.一种多功能组合式矿用安全帽:CN203934723U[P].2014-11-12.SUN Linhui,SUN Yu,SUN Long.The utility model relates to a multifunctional combined mine safety helmet:CN203934723U[P].2014-11-12. [12] 马明刚,严家常,郑贤喜,等.基于IMU智能安全帽姿态估计[J].工业安全与环保,2020,46(3):34-37.MA Minggang,YAN Jiachang,ZHENG Xianxi,et al.Attitude estimation of intelligent helmet based on IMU[J].Industrial Safety and Environmental Protection,2020,46(3):34-37. [13] APARICIO C.Implementation of a quaternion-based Kalman filter for human body motion tracking using MARG sensors[D].Monterey:Naval Postgraduate School,2004. [14] 冯毅博,李希胜,张晓娟.一种电子磁罗盘航向误差的自适应补偿方法[J].仪器仪表学报,2014,35(11):2607-2614.FENG Yibo,LI Xisheng,ZHANG Xiaojuan.Adaptive compensation method for heading error of electronic magnetic compass[J].Chinese Journal of Scientific Instrument,2014,35(11):2607-2614. [15] 张金艺,徐德政,李若涵,等.9轴MEMS-IMU实时姿态估算算法[J].上海大学学报(自然科学版),2015,21(5):547-559.ZHANG Jinyi,XU Dezheng,LI Ruohan,et al.9-axis MEMS-IMU real-time data fusion algorithm for attitude estimation[J].Journal of Shanghai University(Natural Science Edition),2015,21(5):547-559. [16] 陈孟元,谢义建,陈跃东.基于四元数改进型互补滤波的MEMS姿态解算[J].电子测量与仪器学报,2015,29(9):1391-1397.CHEN Mengyuan,XIE Yijian,CHEN Yuedong.Attitude estimation of MEMS based on improved quaternion complementary filter[J].Journal of Electronic Measurement and Instrumentation,2015,29(9):1391-1397.
点击查看大图
计量
- 文章访问数: 228
- HTML全文浏览量: 25
- PDF下载量: 19
- 被引次数: 0