Research on UWB personnel positioning system in coal mine
-
摘要: 针对煤矿井下复杂环境中非视距(NLOS)干扰影响无线信号传输问题,设计了一种煤矿井下超宽带(UWB)人员定位系统。该系统采用带有回传帧机制的非对称双边双向测距算法进行测距,无需时钟同步,保证了测距精度;采用区域判定策略和区域校正策略划分定位区域,使得标签只与自身所在定位区域内基站通信实现定位,避免了定位过程中的大量无效帧问题,提高了定位效率;采用加权最小二乘法与无损卡尔曼滤波联合定位算法解算标签位置坐标,提高了定位精度;在基站中配置了备用电源,保证在断电情况下的应急供电;采用以太网与LoRa 2种通信方式,在以太网断线情况下以LoRa方式传输测距数据,保证了系统应急通信。测试结果表明:该系统具有较高的动静态定位精度,抗NLOS干扰能力较强;在基站断电或以太网断线情况下,系统能够实现一段时间内的应急通信。Abstract: In order to solve the problem that non-line-of-sight(NLOS) interference affects wireless signal transmission in complex underground environment of coal mines, an ultra wide band(UWB) personnel positioning system in coal mine is designed. The system uses asymmetric double-sided two-way ranging algorithm with return frame mechanism for ranging without clock synchronization, which ensures the ranging precision. The positioning area is divided by the area discrimination strategy and the area correction strategy, so that the tag can only communicate with the base station in the positioning area to achieve positioning, which avoids a large number of invalid frames in the positioning process and improves the positioning efficiency. The weighted least squares method and the unscented Kalman filter joint positioning algorithm are used to solve the tag position coordinates, which improves the positioning precision. A backup power supply is configured in the base station to ensure emergency power supply in case of power failure. Two communication modes, Ethernet and LoRa, are adopted. When the Ethernet is disconnected, the ranging data is transmitted in the LoRa mode, which ensures the emergency communication of the system. The test results show that the system has high dynamic and static positioning precision and strong anti-NLOS interference capability. When the base station is powered off or the Ethernet is disconnected, the system can realize emergency communication for a period of time.
-
[1] 刘耀波.基于红外探测的人员搜索及定位技术研究[J].矿山测量,2020,48(5):31-35.LIU Yaobo.Research on personnel search and orientation technology based on infrared detection[J].Mine Surveying,2020,48(5):31-35. [2] 田子建,李宗伟,刘晓阳,等.基于电磁波及超声波联合测距的井下定位方法[J].北京理工大学学报,2014,34(5):490-494.TIAN Zijian,LI Zongwei,LIU Xiaoyang,et al.A positioning method in mine tunnel based on joint electromagnetic wave and ultrasonic distance measurement[J].Transactions of Beijing Institute of Technology,2014,34(5):490-494. [3] ABDULRAHMAN A, ABDULMALIK A S, MANSOUR A, et al. Ultra wideband indoor positioning technologies:analysis and recent advances[J].Sensors,2016,16(5):1-36. [4] 丁亚男,张旭,徐露.基于UWB的室内定位技术综述[J].智能计算机与应用,2019,9(5):91-94.DING Yanan,ZHANG Xu,XU Lu.Overview of indoor positioning technology based on UWB[J].Intelligent Computer and Applications,2019,9(5):91-94. [5] 仲江涛.基于UWB室内定位算法的研究与实现[D].深圳:深圳大学,2017.ZHONG Jiangtao.Research and implementation of indoor location algorithm based on UWB[D].Shenzhen:Shenzhen University,2017. [6] 顾慧东.基于UWB的室内测距与定位系统[D].南京:南京邮电大学,2020.GU Huidong.Indoor ranging and positioning system based on UWB[D]. Nanjing:Nanjing University of Posts and Telecommunications,2020. [7] 丁升.LOS与NLOS混合环境下基于UWB的室内定位算法研究及实现[D].重庆:重庆邮电大学,2020. DING Sheng.Research and implementation of UWB-based indoor location algorithm in mixed environment of LOS and NLOS[D].Chongqing:Chongqing University of Posts and Telecommunications,2020. [8] 崔海尚.UWB室内定位的非视距障碍物识别与误差补偿[D].徐州:中国矿业大学,2020. CUI Haishang.Non-line-of-sight obstacle recognition and error compensation for UWB indoor positioning[D].Xuzhou:China University of Mining and Technology,2020. [9] 何永平,刘冉,付文鹏,等.非视距环境下基于UWB的室内动态目标定位[J].传感器与微系统,2020,39(8):46-49.HE Yongping,LIU Ran,FU Wenpeng,et al.Indoor dynamic object positioning in NLOS environment based on UWB[J].Transducer and Microsystem Technologies,2020,39(8):46-49. [10] 罗豪龙,李广云,欧阳文,等.基于自适应卡尔曼滤波的TDOA定位方法[J].测绘科学技术学报,2020,37(3):252-257.LUO Haolong,LI Guangyun,OUYANG Wen,et al.TDOA positioning method based on adaptive Kalman filter[J].Journal of Geomatics Science and Technology,2020,37(3):252-257. [11] 王浩,李波.基于UWB的室内高精度动态定位算法实现[J].信息通信,2020(3):35-39.WANG Hao,LI Bo.Realization of indoor high precision dynamic positioning algorithm based on UWB[J].Information & Communications,2020(3):35-39. [12] DOTLIC I,CONNELL A,HANG M,et al.Angle of arrival estimation using decawave DW1000 integrated circuits[C]//The 14th Workshop on Positioning, Navigation and Communications,Bremen,2017:1-6. [13] NAEL A, ABDUL H, DAHLILA P. Evaluation of LoRa-based air pollution monitoring system[J].International Journal of Advanced Computer Science and Applications,2019,10(7):391-396. [14] 卢靖宇,余文涛,赵新,等.基于超宽带的移动机器人室内定位系统设计[J].电子技术应用,2017,43(5):25-28.LU Jingyu,YU Wentao,ZHAO Xin,et al.Design of indoor positioning system for mobile robot based on ultra-wideband[J].Application of Electronic Technique,2017,43(5):25-28. [15] GHAEDI A, GOLSHAN M. Modified WLS three-phase state estimation formulation for fault analysis considering measurement and parameter errors[J].Electric Power Systems Research,2021,190:106854. [16] 王晓明.基于测距的超宽带室内定位算法研究[D].徐州:中国矿业大学,2019. WANG Xiaoming.Research on ultra-wideband indoor positioning algorithm based on ranging[D].Xuzhou: China University of Mining and Technology,2019.
点击查看大图
计量
- 文章访问数: 504
- HTML全文浏览量: 23
- PDF下载量: 118
- 被引次数: 0