Digital identity management system for mine hydraulic props based on dual-mode wireless communication
-
摘要:
传统矿用单体液压支柱的管理维护模式效率低、追溯困难、安全性低,但在煤矿井下环境中,基于无线射频识别(RFID)的矿用单体液压支柱管理系统易受金属干扰而影响识别效果,且数据通信高度依赖单一网络,难以保障通信的稳定性与实时性。针对上述问题,设计了一种基于双模式无线通信的RFID矿用单体液压支柱数字身份管理系统,并采用PCB超高频抗金属标签降低金属环境对RFID的干扰。通过RFID手持阅读器APP一键上传功能,将液压支柱状态数据无线发送至服务器端的管理软件,实现对液压支柱全生命周期的监控和管理。为适应井下复杂的无线环境,提出了双模式无线通信方式,通过公共WiFi和AP热点的智能切换,有效解决了井下网络覆盖不足的难题,保证了数据传输的可靠性。引入了基于信息熵理论的动态数据价值评估模型,实现了基于数据价值的动态分级传输策略。测试结果表明:PCB超高频抗金属标签在无障碍条件下的有效识别距离为2.2 m,识别稳定性达98%;在WiFi模式下,系统有效数据传输距离为5.2 m,且传输成功率在90%以上。
Abstract:The traditional management and maintenance mode of single hydraulic supports used in mining is inefficient, difficult to trace, and has low safety. However, in the underground coal mine environment, RFID-based management systems for single hydraulic supports are easily affected by metal interference, which degrades identification performance, and their data communication heavily relies on a single network, making it difficult to ensure stable and real-time communication. To address these issues, a digital identity management system for mining single hydraulic supports based on dual-mode wireless communication and RFID was designed, using PCB ultra-high-frequency anti-metal tags to reduce metal environment interference on RFID. By scanning the RFID tags on hydraulic supports with a handheld reader, the basic information and status (normal, fault, scrap, etc.) of the hydraulic supports could be read. The handheld terminal app provided a one-click upload function to wirelessly send the hydraulic support status data to server-side management software, achieving full lifecycle monitoring and management of the hydraulic supports. To adapt to the complex underground wireless environment, a dual-mode wireless communication method was proposed, intelligently switching between public WiFi and AP hotspots, effectively solving the problem of insufficient network coverage underground and ensuring reliable data transmission. A dynamic data value evaluation model based on information entropy theory was introduced to implement a data-value-based dynamic hierarchical transmission strategy. Test results showed that the PCB ultra-high-frequency anti-metal tag had an effective identification distance of 2.2 meters under unobstructed conditions, with identification stability reaching 98%. Under WiFi mode, the system’s effective data transmission distance was 5.2 meters, with a transmission success rate above 90%.
-
-
表 1 PCB超高频抗金属标签主要参数
Table 1 Key Parameters of PCB UHF anti-metal tags
射频频率/MHz 840~960 射频协议 ISO18000-6C 芯片容量/bit 96~128 读写距离/m 0~2 标签尺寸/mm 70×20×4 表 2 不同状态−位置组合下的数据字段权重分配
Table 2 Data field weight distribution for different status and location combinations
状态 位置 p(x1) p(x2) p(x3) p(x4) 正常 作业区 0.25 0.30 0.30 0.15 过渡区 0.28 0.28 0.26 0.18 备用区 0.30 0.25 0.25 0.20 故障 作业区 0.15 0.55 0.20 0.10 过渡区 0.18 0.50 0.22 0.10 备用区 0.20 0.45 0.25 0.10 报废 作业区 0.10 0.60 0.20 0.10 过渡区 0.15 0.55 0.20 0.10 备用区 0.20 0.40 0.30 0.10 表 3 标签识别测试结果
Table 3 Tag identification test results
标签编号 标签类型 尺寸/mm 材质 D/m d/m S/% TAG−001 ABS抗
金属标签95×25 工程
塑料1.80 0.30 94 TAG−002 70×25 1.60 0.20 92 TAG−003 不干胶
柔性标签45×20 PVC
薄膜0.60 0.10 75 TAG−004 63×12 0.70 0.15 75 TAG−005 PCB抗
金属标签52×13 陶瓷
基材0.90 0.25 95 TAG−006 70×20 1.90 0.45 97 TAG−007 80×20 2.20 0.60 98 TAG−008 柔性抗
金属标签30×15 PET
泡棉0.80 0.35 89 TAG−009 60×25 1.50 0.40 92 表 4 WiFi数据传输测试结果
Table 4 WiFi data transmission test results
测试模式 测试距离/m R/m P/s T/s 系统WiFi 1.0 5.2 100 0.12 2.0 98 0.16 3.0 95 0.25 4.0 93 0.30 5.0 90 0.33 5.5 72 0.45 -
[1] 刘洋. 浅谈煤矿单体液压支柱的应用与维护管理[J]. 装备维修技术,2019(1):81-85,103. LIU Yang. A brief discussion on the application and maintenance management of single hydraulic props in coal mines[J]. Equipment Technology,2019(1):81-85,103.
[2] SU Wenpeng,ZHENG Boyang,JIANG Pengfei. Study on anchor cable instead of single hydraulic prop support in advance support of deep roadway[J]. Advances in Civil Engineering,2021. DOI: 10.1155/2021/6644832.
[3] 秦亚平. 某煤矿综采工作面单体液压支柱监测系统探析[J]. 机械管理开发,2024,39(6):245-247,250. QIN Yaping. Analysis of monitoring system of monolithic hydraulic pillar in synthesized mining face of a coal mine[J]. Mechanical Management and Development,2024,39(6):245-247,250.
[4] 蒋劭杰. 煤矿井下液压支架油缸泄漏故障及维修探讨[J]. 矿业装备,2022(3):128-129. DOI: 10.3969/j.issn.2095-1418.2022.03.051 JIANG Shaojie. Discussion on leakage faults and maintenance of hydraulic support cylinders in coal mines[J]. Mining Equipment,2022(3):128-129. DOI: 10.3969/j.issn.2095-1418.2022.03.051
[5] 崔希国,韩安. 基于RFID的煤矿设备巡检系统设计[J]. 工矿自动化,2018,44(10):77-80. CUI Xiguo,HAN An. Design of inspection system for coal mine equipments based on RFID[J]. Industry and Mine Automation,2018,44(10):77-80.
[6] 张慧芳,史沁彬. 新型单体液压支柱编号牌的设计与应用[J]. 煤,2019,28(9):58,64. ZHANG Huifang,SHI Qinbin. Design and application of new single hydraulic prop numbering plate[J]. Coal,2019,28(9):58,64.
[7] 张扬. 煤矿支护存在的问题及策略[J]. 西部探矿工程,2020,32(1):105-106,108. DOI: 10.3969/j.issn.1004-5716.2020.01.032 ZHANG Yang. Problems and strategies in coal mine support[J]. West-China Exploration Engineering,2020,32(1):105-106,108. DOI: 10.3969/j.issn.1004-5716.2020.01.032
[8] 杨永. 煤矿机电设备智能管理系统中无线射频识别技术的应用[J]. 内蒙古煤炭经济,2023(21):144-146. DOI: 10.3969/j.issn.1008-0155.2023.21.049 YANG Yong. Application of radio frequency identification technology in intelligent management systems for coal mine electromechanical equipment[J]. Inner Mongolia Coal Economy,2023(21):144-146. DOI: 10.3969/j.issn.1008-0155.2023.21.049
[9] 昝鹏,杨振兴,李进. 基于物联网RFID的煤矿综采工作面液压支架远程集控方法[J]. 煤矿现代化,2024,33(6):79-82. DOI: 10.3969/j.issn.1009-0797.2024.06.016 ZAN Peng,YANG Zhenxing,LI Jin. Remote centralized control method of hydraulic support for fully mechanized coal mine working face based on Internet of things RFID[J]. Coal Mine Modernization,2024,33(6):79-82. DOI: 10.3969/j.issn.1009-0797.2024.06.016
[10] 凌晨,刘超锋,郭杰,等. 基于RFID技术的装备维修物资管理系统设计[J]. 机械工程与自动化,2024(4):182-184. DOI: 10.3969/j.issn.1672-6413.2024.04.067 LING Chen,LIU Chaofeng,GUO Jie,et al. Design of equipment maintenance materials management system based on RFID technology[J]. Mechanical Engineering & Automation,2024(4):182-184. DOI: 10.3969/j.issn.1672-6413.2024.04.067
[11] 宋鹏,贾志兵. 基于RFID技术的煤矿机电设备运行监测系统研究[J]. 家电维修,2024(9):9-11. SONG Peng,JIA Zhibing. Research on operation monitoring system of coal mine electromechanical equipment based on RFID technology[J]. Appliance Repairing,2024(9):9-11.
[12] DE JESUS PACHECO D A,JUNG C F,DE AZAMBUJA M C. Towards industry 4.0 in practice:a novel RFID-based intelligent system for monitoring and optimisation of production systems[J]. Journal of Intelligent Manufacturing,2023,34(3):1165-1181. DOI: 10.1007/s10845-021-01840-w
[13] LIU Xuan,YIN Jiangjin,ZHANG Shigeng,et al. Time-efficient target tags information collection in large-scale RFID systems[J]. IEEE Transactions on Mobile Computing,2021,20(9):2891-2905. DOI: 10.1109/TMC.2020.2992256
[14] LIU Jia,YU Xi,LIU Xuan,et al. Time-efficient range detection in commodity RFID systems[J]. ACM Transactions on Networking,2020(3):1118-1131. DOI: 10.1109/ICNP49622.2020.9259371
[15] 陈军. 无线通信网络井下拥堵问题及对策[J]. 工矿自动化,2024,50(增刊2):132-134,141. CHEN Jun. Underground congestion problems and countermeasures of wireless communication networks[J]. Journal of Mine Automation,2024,50(S2):132-134,141.
[16] 张航溥. 井下5G网络覆盖策略研究[J]. 信息与电脑(理论版),2024,36(13):136-139. ZHANG Hangpu. Research on underground 5G network coverage strategy[J]. Information & Computer,2024,36(13):136-139.
[17] WOHWE SAMBO D,FÖRSTER A. Wireless underground sensor networks:a comprehensive survey and tutorial[J]. ACM Computing Surveys,2024,56(4):1-44.
[18] KNAPP H,ROMAGNOLI G. RFID systems optimisation through the use of a new RFID network planning algorithm to support the design of receiving gates[J]. Journal of Intelligent Manufacturing,2023,34(3):1389-1407. DOI: 10.1007/s10845-021-01858-0
[19] 陆宝铃. 开放数据的内在价值评估研究[D]. 北京:北京邮电大学,2024. LU Baoling. Research on the evaluation of the intrinsic value of open data[D]. Beijing:Beijing University of Posts and Telecommunications,2024.
[20] 杨亚琦,李博雄,杨东霞,等. 基于信息熵的异常数据判别方法[J]. 科学技术创新,2023(24):194-199. DOI: 10.3969/j.issn.1673-1328.2023.24.049 YANG Yaqi,LI Boxiong,YANG Dongxia,et al. A method of discriminating abnormal data based on information entropy[J]. Scientific and Technological Innovation,2023(24):194-199. DOI: 10.3969/j.issn.1673-1328.2023.24.049
[21] 金坚,赵玲. 大数据时代信息熵的价值意义[J]. 科学技术哲学研究,2018,35(3):117-121. JIN Jian,ZHAO Ling. The value significance of information entropy in the era of big data[J]. Studies in Philosophy of Science and Technology,2018,35(3):117-121.
-
期刊类型引用(2)
1. 刘媛媛. 煤矿机电设备智能化维护研究现状与发展趋势. 工矿自动化. 2021(07): 79-84 . 本站查看
2. 胡韶华,谷振宇,金迪文. 一种轴流通风机故障诊断方法. 工矿自动化. 2018(05): 58-63 . 本站查看
其他类型引用(4)