基于双模式无线通信的矿用单体液压支柱数字身份管理系统

张璨, 鲁力群, 耿文鹏, 付姗姗, 谢欣妤

张璨,鲁力群,耿文鹏,等. 基于双模式无线通信的矿用单体液压支柱数字身份管理系统[J]. 工矿自动化,2025,51(5):140-146, 162. DOI: 10.13272/j.issn.1671-251x.2025040039
引用本文: 张璨,鲁力群,耿文鹏,等. 基于双模式无线通信的矿用单体液压支柱数字身份管理系统[J]. 工矿自动化,2025,51(5):140-146, 162. DOI: 10.13272/j.issn.1671-251x.2025040039
ZHANG Can, LU Liqun, GENG Wenpeng, et al. Digital identity management system for mine hydraulic props based on dual-mode wireless communication[J]. Journal of Mine Automation,2025,51(5):140-146, 162. DOI: 10.13272/j.issn.1671-251x.2025040039
Citation: ZHANG Can, LU Liqun, GENG Wenpeng, et al. Digital identity management system for mine hydraulic props based on dual-mode wireless communication[J]. Journal of Mine Automation,2025,51(5):140-146, 162. DOI: 10.13272/j.issn.1671-251x.2025040039

基于双模式无线通信的矿用单体液压支柱数字身份管理系统

基金项目: 

中央引导地方科技发展专项资金项目(YDZX2023086);山东省重点研发计划(竞争性创新平台)项目(2024CXPT094)。

详细信息
    作者简介:

    张璨(2001—),女,山东潍坊人,硕士研究生,研究方向为无线射频识别技术,E-mail:baotantan0410@163.com

    通讯作者:

    鲁力群(1969—),男,陕西渭南人,副教授,博士,研究方向为智慧物流与物联网技术,E-mail: luliqun@sdut.edu.cn

  • 中图分类号: TD355

Digital identity management system for mine hydraulic props based on dual-mode wireless communication

  • 摘要:

    传统矿用单体液压支柱的管理维护模式效率低、追溯困难、安全性低,但在煤矿井下环境中,基于无线射频识别(RFID)的矿用单体液压支柱管理系统易受金属干扰而影响识别效果,且数据通信高度依赖单一网络,难以保障通信的稳定性与实时性。针对上述问题,设计了一种基于双模式无线通信的RFID矿用单体液压支柱数字身份管理系统,并采用PCB超高频抗金属标签降低金属环境对RFID的干扰。通过RFID手持阅读器APP一键上传功能,将液压支柱状态数据无线发送至服务器端的管理软件,实现对液压支柱全生命周期的监控和管理。为适应井下复杂的无线环境,提出了双模式无线通信方式,通过公共WiFi和AP热点的智能切换,有效解决了井下网络覆盖不足的难题,保证了数据传输的可靠性。引入了基于信息熵理论的动态数据价值评估模型,实现了基于数据价值的动态分级传输策略。测试结果表明:PCB超高频抗金属标签在无障碍条件下的有效识别距离为2.2 m,识别稳定性达98%;在WiFi模式下,系统有效数据传输距离为5.2 m,且传输成功率在90%以上。

    Abstract:

    The traditional management and maintenance mode of single hydraulic supports used in mining is inefficient, difficult to trace, and has low safety. However, in the underground coal mine environment, RFID-based management systems for single hydraulic supports are easily affected by metal interference, which degrades identification performance, and their data communication heavily relies on a single network, making it difficult to ensure stable and real-time communication. To address these issues, a digital identity management system for mining single hydraulic supports based on dual-mode wireless communication and RFID was designed, using PCB ultra-high-frequency anti-metal tags to reduce metal environment interference on RFID. By scanning the RFID tags on hydraulic supports with a handheld reader, the basic information and status (normal, fault, scrap, etc.) of the hydraulic supports could be read. The handheld terminal app provided a one-click upload function to wirelessly send the hydraulic support status data to server-side management software, achieving full lifecycle monitoring and management of the hydraulic supports. To adapt to the complex underground wireless environment, a dual-mode wireless communication method was proposed, intelligently switching between public WiFi and AP hotspots, effectively solving the problem of insufficient network coverage underground and ensuring reliable data transmission. A dynamic data value evaluation model based on information entropy theory was introduced to implement a data-value-based dynamic hierarchical transmission strategy. Test results showed that the PCB ultra-high-frequency anti-metal tag had an effective identification distance of 2.2 meters under unobstructed conditions, with identification stability reaching 98%. Under WiFi mode, the system’s effective data transmission distance was 5.2 meters, with a transmission success rate above 90%.

  • 图  1   基于双模式无线通信的矿用单体液压支柱数字身份管理系统架构

    Figure  1.   Architecture of digital identity management system for mining single hydraulic support based on dual-mode wireless communication

    图  2   系统工作流程

    Figure  2.   System workflow

    图  3   RFID手持阅读器关键模块

    Figure  3.   Key module of RFID handheld reader

    图  4   数据库表结构关系

    Figure  4.   Database table structure relationship

    图  5   手持端扫描维护软件界面

    Figure  5.   Handheld terminal scanning and maintenance software interface

    图  6   蓝牙连接程序流程

    Figure  6.   Bluetooth connection process flow

    图  7   标签数据接收处理程序流程

    Figure  7.   Tag data reception and processing program flow

    图  8   管理软件界面

    Figure  8.   Management software interface

    图  9   双模式无线数据传输程序流程

    Figure  9.   Dual-mode wireless data transmission process

    表  1   PCB超高频抗金属标签主要参数

    Table  1   Key Parameters of PCB UHF anti-metal tags

    射频频率/MHz 840~960
    射频协议 ISO18000-6C
    芯片容量/bit 96~128
    读写距离/m 0~2
    标签尺寸/mm 70×20×4
    下载: 导出CSV

    表  2   不同状态−位置组合下的数据字段权重分配

    Table  2   Data field weight distribution for different status and location combinations

    状态 位置 px1 px2 px3 px4
    正常作业区0.250.300.300.15
    过渡区0.280.280.260.18
    备用区0.300.250.250.20
    故障作业区0.150.550.200.10
    过渡区0.180.500.220.10
    备用区0.200.450.250.10
    报废作业区0.100.600.200.10
    过渡区0.150.550.200.10
    备用区0.200.400.300.10
    下载: 导出CSV

    表  3   标签识别测试结果

    Table  3   Tag identification test results

    标签编号 标签类型 尺寸/mm 材质 D/m d/m S/%
    TAG−001 ABS抗
    金属标签
    95×25 工程
    塑料
    1.80 0.30 94
    TAG−002 70×25 1.60 0.20 92
    TAG−003 不干胶
    柔性标签
    45×20 PVC
    薄膜
    0.60 0.10 75
    TAG−004 63×12 0.70 0.15 75
    TAG−005 PCB抗
    金属标签
    52×13 陶瓷
    基材
    0.90 0.25 95
    TAG−006 70×20 1.90 0.45 97
    TAG−007 80×20 2.20 0.60 98
    TAG−008 柔性抗
    金属标签
    30×15 PET
    泡棉
    0.80 0.35 89
    TAG−009 60×25 1.50 0.40 92
    下载: 导出CSV

    表  4   WiFi数据传输测试结果

    Table  4   WiFi data transmission test results

    测试模式测试距离/mR/mP/sT/s
    系统WiFi1.05.21000.12
    2.0980.16
    3.0950.25
    4.0930.30
    5.0900.33
    5.5720.45
    下载: 导出CSV
  • [1] 刘洋. 浅谈煤矿单体液压支柱的应用与维护管理[J]. 装备维修技术,2019(1):81-85,103.

    LIU Yang. A brief discussion on the application and maintenance management of single hydraulic props in coal mines[J]. Equipment Technology,2019(1):81-85,103.

    [2]

    SU Wenpeng,ZHENG Boyang,JIANG Pengfei. Study on anchor cable instead of single hydraulic prop support in advance support of deep roadway[J]. Advances in Civil Engineering,2021. DOI: 10.1155/2021/6644832.

    [3] 秦亚平. 某煤矿综采工作面单体液压支柱监测系统探析[J]. 机械管理开发,2024,39(6):245-247,250.

    QIN Yaping. Analysis of monitoring system of monolithic hydraulic pillar in synthesized mining face of a coal mine[J]. Mechanical Management and Development,2024,39(6):245-247,250.

    [4] 蒋劭杰. 煤矿井下液压支架油缸泄漏故障及维修探讨[J]. 矿业装备,2022(3):128-129. DOI: 10.3969/j.issn.2095-1418.2022.03.051

    JIANG Shaojie. Discussion on leakage faults and maintenance of hydraulic support cylinders in coal mines[J]. Mining Equipment,2022(3):128-129. DOI: 10.3969/j.issn.2095-1418.2022.03.051

    [5] 崔希国,韩安. 基于RFID的煤矿设备巡检系统设计[J]. 工矿自动化,2018,44(10):77-80.

    CUI Xiguo,HAN An. Design of inspection system for coal mine equipments based on RFID[J]. Industry and Mine Automation,2018,44(10):77-80.

    [6] 张慧芳,史沁彬. 新型单体液压支柱编号牌的设计与应用[J]. 煤,2019,28(9):58,64.

    ZHANG Huifang,SHI Qinbin. Design and application of new single hydraulic prop numbering plate[J]. Coal,2019,28(9):58,64.

    [7] 张扬. 煤矿支护存在的问题及策略[J]. 西部探矿工程,2020,32(1):105-106,108. DOI: 10.3969/j.issn.1004-5716.2020.01.032

    ZHANG Yang. Problems and strategies in coal mine support[J]. West-China Exploration Engineering,2020,32(1):105-106,108. DOI: 10.3969/j.issn.1004-5716.2020.01.032

    [8] 杨永. 煤矿机电设备智能管理系统中无线射频识别技术的应用[J]. 内蒙古煤炭经济,2023(21):144-146. DOI: 10.3969/j.issn.1008-0155.2023.21.049

    YANG Yong. Application of radio frequency identification technology in intelligent management systems for coal mine electromechanical equipment[J]. Inner Mongolia Coal Economy,2023(21):144-146. DOI: 10.3969/j.issn.1008-0155.2023.21.049

    [9] 昝鹏,杨振兴,李进. 基于物联网RFID的煤矿综采工作面液压支架远程集控方法[J]. 煤矿现代化,2024,33(6):79-82. DOI: 10.3969/j.issn.1009-0797.2024.06.016

    ZAN Peng,YANG Zhenxing,LI Jin. Remote centralized control method of hydraulic support for fully mechanized coal mine working face based on Internet of things RFID[J]. Coal Mine Modernization,2024,33(6):79-82. DOI: 10.3969/j.issn.1009-0797.2024.06.016

    [10] 凌晨,刘超锋,郭杰,等. 基于RFID技术的装备维修物资管理系统设计[J]. 机械工程与自动化,2024(4):182-184. DOI: 10.3969/j.issn.1672-6413.2024.04.067

    LING Chen,LIU Chaofeng,GUO Jie,et al. Design of equipment maintenance materials management system based on RFID technology[J]. Mechanical Engineering & Automation,2024(4):182-184. DOI: 10.3969/j.issn.1672-6413.2024.04.067

    [11] 宋鹏,贾志兵. 基于RFID技术的煤矿机电设备运行监测系统研究[J]. 家电维修,2024(9):9-11.

    SONG Peng,JIA Zhibing. Research on operation monitoring system of coal mine electromechanical equipment based on RFID technology[J]. Appliance Repairing,2024(9):9-11.

    [12]

    DE JESUS PACHECO D A,JUNG C F,DE AZAMBUJA M C. Towards industry 4.0 in practice:a novel RFID-based intelligent system for monitoring and optimisation of production systems[J]. Journal of Intelligent Manufacturing,2023,34(3):1165-1181. DOI: 10.1007/s10845-021-01840-w

    [13]

    LIU Xuan,YIN Jiangjin,ZHANG Shigeng,et al. Time-efficient target tags information collection in large-scale RFID systems[J]. IEEE Transactions on Mobile Computing,2021,20(9):2891-2905. DOI: 10.1109/TMC.2020.2992256

    [14]

    LIU Jia,YU Xi,LIU Xuan,et al. Time-efficient range detection in commodity RFID systems[J]. ACM Transactions on Networking,2020(3):1118-1131. DOI: 10.1109/ICNP49622.2020.9259371

    [15] 陈军. 无线通信网络井下拥堵问题及对策[J]. 工矿自动化,2024,50(增刊2):132-134,141.

    CHEN Jun. Underground congestion problems and countermeasures of wireless communication networks[J]. Journal of Mine Automation,2024,50(S2):132-134,141.

    [16] 张航溥. 井下5G网络覆盖策略研究[J]. 信息与电脑(理论版),2024,36(13):136-139.

    ZHANG Hangpu. Research on underground 5G network coverage strategy[J]. Information & Computer,2024,36(13):136-139.

    [17]

    WOHWE SAMBO D,FÖRSTER A. Wireless underground sensor networks:a comprehensive survey and tutorial[J]. ACM Computing Surveys,2024,56(4):1-44.

    [18]

    KNAPP H,ROMAGNOLI G. RFID systems optimisation through the use of a new RFID network planning algorithm to support the design of receiving gates[J]. Journal of Intelligent Manufacturing,2023,34(3):1389-1407. DOI: 10.1007/s10845-021-01858-0

    [19] 陆宝铃. 开放数据的内在价值评估研究[D]. 北京:北京邮电大学,2024.

    LU Baoling. Research on the evaluation of the intrinsic value of open data[D]. Beijing:Beijing University of Posts and Telecommunications,2024.

    [20] 杨亚琦,李博雄,杨东霞,等. 基于信息熵的异常数据判别方法[J]. 科学技术创新,2023(24):194-199. DOI: 10.3969/j.issn.1673-1328.2023.24.049

    YANG Yaqi,LI Boxiong,YANG Dongxia,et al. A method of discriminating abnormal data based on information entropy[J]. Scientific and Technological Innovation,2023(24):194-199. DOI: 10.3969/j.issn.1673-1328.2023.24.049

    [21] 金坚,赵玲. 大数据时代信息熵的价值意义[J]. 科学技术哲学研究,2018,35(3):117-121.

    JIN Jian,ZHAO Ling. The value significance of information entropy in the era of big data[J]. Studies in Philosophy of Science and Technology,2018,35(3):117-121.

  • 期刊类型引用(2)

    1. 刘媛媛. 煤矿机电设备智能化维护研究现状与发展趋势. 工矿自动化. 2021(07): 79-84 . 本站查看
    2. 胡韶华,谷振宇,金迪文. 一种轴流通风机故障诊断方法. 工矿自动化. 2018(05): 58-63 . 本站查看

    其他类型引用(4)

图(9)  /  表(4)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  5
  • PDF下载量:  13
  • 被引次数: 6
出版历程
  • 收稿日期:  2025-04-14
  • 修回日期:  2025-05-25
  • 网络出版日期:  2025-06-04
  • 刊出日期:  2025-05-14

目录

    XIE Xinyu

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回