Research on correlation between regional seismic characteristics and coal mine rockburst in Hegang
-
摘要:
天然地震与矿井冲击地压均为地壳岩体应力释放的瞬态破裂过程。目前研究主要是从地质动力环境或震源机制解单方面对地震与冲击地压相关性进行研究。而研究二者在地质动力环境、时空、震源解特征等方面的相关性,可为矿区动态风险评估提供新参数,提升预警精度。以鹤岗区域天然地震和矿井冲击地压为研究背景,基于地震台与流动地震监测台站多平台的地震数据,分析鹤岗区域地震特征与矿井冲击地压所处的地质动力环境,以及在时空方面的相关性。研究表明:① 鹤岗南部矿区地震活动显著,呈NNE向条带展布,而矿井冲击地压呈NE向展布,二者呈“平行共轭”关系,与区域大型地质构造依兰−伊通断裂带的地震活动NE向展布规律一致,表明鹤岗南部矿区的地壳活动性受到区域地质动力环境的控制作用。② 通过对同一周期内的地震与矿井冲击地压发生的时间、位置、频次等相关性分析,表明二者在时空上具有较好的一致性,且峻德煤矿井田范围的地震震级为1.2~1.6,发震频次为2~5,矿井冲击地压发生主要集中于1.4级震级等值线附近,5次频次等值线附近,小震频发反映了区域地壳的能量处于缓慢释放阶段,有利于矿井冲击地压的孕育。③ 通过震源机制解的分析,揭示了地震与矿井大能量微震事件的压应力轴方向一致,具有统一的构造应力场和能量条件,表明鹤岗区域地震与矿井冲击地压具有统一的地质动力环境条件。
Abstract:Natural earthquakes and coal mine rockbursts are both transient fracturing processes of stress release in crustal rock mass. Current research primarily investigates the correlation between earthquakes and rockbursts from either the geodynamic environment or focal mechanism solutions separately. However, examining their relationship in terms of geodynamic environments, spatiotemporal characteristics, and focal mechanism solutions can provide new parameters for dynamic risk assessment in mining areas, thereby improving accuracy of early warning. Taking natural earthquakes and coal mine rockbursts in Hegang as the research backgrounds, and based on seismic data from multiple platforms of seismic stations and mobile seismic monitoring stations, this study analyzed the geodynamic environment and spatiotemporal correlation between regional seismic characteristics and coal mine rockbursts. The results showed that: ① the southern Hegang mining area exhibited significant seismic activities, displaying a NNE-trending linear distribution, while coal mine rockbursts showed an NE-trending distribution. The two exhibited a parallel conjugate relationship, consistent with the NE-trending distribution pattern of seismic activities in the regional large-scale geological structure, the Yilan-Yitong fault zone. This indicated that crustal activities in the southern Hegang mining area were controlled by the regional geodynamic environments. ② Correlation analysis of the timing, location, and frequency of earthquakes and coal mine rockbursts during the same period demonstrated strong spatiotemporal consistency. In the Junde coal mine field, earthquake magnitudes typically ranged between 1.2 and 1.6, with frequencies of 2-5 events. Coal mine rockbursts predominantly occurred near the magnitude contour line of 1.4 and the frequency contour line of 5 events. The frequent occurrence of small earthquakes reflected that the energy of the regional crust was in a stage of gradual release, creating favorable conditions for coal mine rockburst development. ③ Focal mechanism solution analysis revealed that the compressive stress axis orientation of earthquakes was consistent with that of high-energy microseismic events in coal mines, indicating a unified tectonic stress field and energy conditions. This further manifested that earthquakes and coal mine rockbursts in Hegang shared the same geodynamic environments.
-
-
表 1 地震频次统计情况
Table 1 Statistics of earthquake frequency
震级ML 地震次数 地震次数占总地震次数的比例/% ML≤1 2 364 24.86 1<ML≤2 6 671 70.14 2<ML≤3 442 4.65 3<ML≤4 32 0.33 4<ML≤5 2 0.02 表 2 地震能量和矿井冲击地压事件的关系
Table 2 Relationship between seismic energy and coal mine rockburst events
地震能量/J 103 103~104 104~105 >105 矿井冲击地压次数 1 4 4 6 表 3 微震震源机制解
Table 3 Focal mechanism solutions of microseismic events
序号 节平面I 节平面II P轴 T轴 N轴 走向/m 倾角/(°) 滑动角/(°) 走向/m 倾角/(°) 滑动角/(°) 方位/(°) 倾角/(°) 方位/(°) 倾角/(°) 方位/(°) 倾角/(°) 1 187 77 55 296 37 158 65 16 325 2 241 74 2 6 24 100 196 67 86 28 48 343 46 132 75 3 80 1 −83 8 9 −93 275 66 135 24 7 88 4 179 21 −38 53 77 −107 92 60 146 28 183 87 5 395 23 105 193 68 84 69 27 312 67 270 84 6 205 71 81 259 21 114 70 53 174 73 282 42 7 186 19 101 17 71 86 113 26 322 64 16 87 8 162 23 158 52 82 69 261 41 304 57 49 69 9 176 26 −84 7 64 −95 78 71 318 37 108 63 表 4 地震震源机制解
Table 4 Focal mechanism solutions of earthquakes
震级 节平面I 节平面II P轴 T轴 N轴 走向/m 倾角/(°) 滑动角/(°) 走向/(m) 倾角/(°) 滑动角/(°) 方位/(°) 倾角/(°) 方位/(°) 倾角/(°) 方位/(°) 倾角(°) 3.8 225 15 −3 132 89 −105 79 27 352 32 153 73 4.8 63 65 153 9 39 279 86 49 336 46 123 75 3.2 259 19 −51 156 76 −102 258 23 179 28 163 46 3 101 37 12 53 59 144 81 37 167 67 254 75 3.7 117 73 118 235 23 −32 70 43 142 83 79 92 4 298 77 41 39 50 163 265 41 311 77 47 71 3.2 179 21 −38 53 77 −106 83 27 176 64 256 87 -
[1] 张凤鸣,于中元,许晓艳,等. 鹤岗煤矿矿震与区域天然地震活动相关性分析[J]. 东北地震研究,2005(1):9-13. ZHANG Fengming,YU Zhongyuan,XU Xiaoyan,et al. Correlation analysis between the tremor of Hegame Coal Mine and the reglonal natural earthquake [J]. Seismological Research of Northeast China,2005(1):9-13.
[2] 杨文瀚. 基于鹤岗地区的天然地震动与矿震动识别方法研究[D]. 哈尔滨:哈尔滨理工大学,2020. YANG Wenhan. Research on recognition method of earthquake and mine earthquake based on Hegang area[D]. Harbin:Harbin University of Technology,2020.
[3] 李铁,张建伟,吕毓国,等. 采掘活动与矿震关系[J]. 煤炭学报,2011,36(12):2127-2132. LI Tie,ZHANG Jianwei,LYU Yuguo,et al. Relationship between mining and mining-induced seismicity[J]. Journal of China Coal Society,2011,36(12):2127-2132.
[4] 常金龙,刘淑杰,高东辉,等. 鹤岗地震台阵记录的矿震与天然地震频谱特征分析[J]. 地震地磁观测与研究,2020,41(6):15-26. DOI: 10.3969/j.issn.1003-3246.2020.06.002 CHANG Jinlong,LIU Shujie,GAO Donghui,et al. Analysis of spectral characteristics of mine earthquakes and natural earthquakes recorded by Hegang seismic array[J]. Seismological and Geomagnetic Observation and Research,2020,41(6):15-26. DOI: 10.3969/j.issn.1003-3246.2020.06.002
[5] 张凤鸣,余中元,许晓艳,等. 鹤岗煤矿开采诱发地震研究[J]. 自然灾害学报,2005(1):139-143. DOI: 10.3969/j.issn.1004-4574.2005.01.022 ZHANG Fengming,YU Zhongyuan,XU Xiaoyan,et al. Research on induced earthquakes by coal mining in Hegang[J]. Journal of Natural Disasters,2005(1):139-143. DOI: 10.3969/j.issn.1004-4574.2005.01.022
[6] 张天雷,杨文东,张永刚. 应用震源机制方法研究鹤岗煤田开采区的构造应力环境[J]. 地震工程与工程振动,2011,31(1):174-177. ZHANG Tianlei,YANG Wendong,ZHANG Yonggang. Study on tectonic stress environment of Hegang coalfield by using focal mechanism method[J]. Journal of Earthquake Engineering and Engineering Vibration,2011,31(1):174-177.
[7] 李铁,倪建明,李忠凯. 采动岩体强矿震破裂机制反演及其防治对策[J]. 采矿与安全工程学报,2016,33(6):1110-1115. LI Tie,NI Jianming,LI Zhongkai. Rupture mechanism inversion of mining-induced strong mine earthquake and its preventive methods[J]. Journal of Mining & Safety Engineering,2016,33(6):1110-1115.
[8] 陈波. 中国煤矿灾害与地震活动时空分布丛集特征的初步研究[J]. 地学前缘, 2016, 23(3): 156-169. CHEN Bo. The preliminary research on the cluster feature of time-space distribution of Chinese coalmine disasters and earthquake activities.[J]. Earth Science Frontiers, 2016, 23(3): 156-169.
[9] WOJTECKI Ł,KONICEK P,MENDECKI M J,et al. Evaluation of destress blasting effectiveness using the seismic moment tensor inversion and seismic effect methods[J]. International Journal of Geomechanics,2022,22(4). DOI: 10.1061/(ASCE)GM.1943-5622.0002314.
[10] CHEN Dong,MARTIN M P. Automatic identification model of micro-earthquakes and blasting events in Laohutai Coal Mine based on the measurement of source parameter difference[J]. Measurement,2021,184. DOI: 10.1016/J.MEASUREMENT.2021.109883.
[11] LIANG Chuntao,YU Yangyang,YANG Yihai,et al. Joint inversion of source location and focal mechanism of microseismicity[J]. Geophysics,2016,81(2). DOI: 10.1190/geo2015-0272.1.
[12] 张宏伟. 地质动力环境评价与冲击地压矿井类型划分[C]. 全国煤矿动力灾害防治学术研讨会,菏泽,2019. DOI: 10.26914/c.cnkihy.2019.090856. ZHANG Hongwei. Geodynamic environment assessment and classification of rockburst mine types [C]. National symposium on coal mine power disaster prevention and control,Heze,2019. DOI: 10.26914/c.cnkihy.2019.090856.
[13] 韩军. 煤矿冲击地压地质动力环境研究[J]. 煤炭科学技术,2016,44(6):83-88,105. HAN Jun. Study on geologic dynamic environment of mine strata pressure bump[J]. Coal Science and Technology,2016,44(6):83-88,105.
[14] 韩军,张宏伟,兰天伟,等. 京西煤田冲击地压的地质动力环境[J]. 煤炭学报,2014,39(6):1056-1062. HAN Jun,ZHANG Hongwei,LAN Tianwei,et al. Geodynamic environment of rockburst in western Beijing Coalfield[J]. Journal of China Coal Society,2014,39(6):1056-1062.
[15] 陈蓥,张宏伟,韩军,等. 基于地质动力区划的矿井动力环境研究[J]. 世界地质,2011,30(4):690-696. DOI: 10.3969/j.issn.1004-5589.2011.04.027 CHEN Ying,ZHANG Hongwei,HAN Jun,et al. Research on mine dynamic environment based on geo-dynamic division[J]. Global Geology,2011,30(4):690-696. DOI: 10.3969/j.issn.1004-5589.2011.04.027
[16] 刘业娇,高富,段泽宇,等. 煤岩瓦斯动力灾害事故统计及发生规律分析[J]. 金属矿山,2025(2):180-188. LIU Yejiao,GAO Fu,DUAN Zeyu,et al. Statistics and occurrence law analysis of coal-rock gas dynamic disaster accidents[J]. Metal Mine,2025(2):180-188.
[17] 兰天伟. 大台井冲击地压动力条件分析与防治技术研究[D]. 阜新:辽宁工程技术大学,2012. LAN Tianwei. Research on the geodynamic condition and prevention technology of rockburst in Datai Mine[D]. Fuxin:Liaoning Technical University,2012.
[18] 张宏伟,韩军,宋卫华,等. 地质动力区划[M]. 北京:煤炭工业出版社,2009. ZHANG Hongwei,HAN Jun,SONG Weihua,et al. Geodynamic zoning[M]. Beijing:China Coal Industry Publishing House,2009.
[19] 李俊哲. 煤与瓦斯突出和天然地震相关性研究[D]. 阜新:辽宁工程技术大学,2012. LI Junzhe. Correlative study of coal-gas outburst and natural earthquake[D]. Fuxin:Liaoning Technical University,2012.
[20] 任啸,韩军,姚海亮,等. 阜新地区矿震与浅源地震相关性研究[J]. 金属矿山,2010(2):141-144. REN Xiao,HAN Jun,YAO Hailiang,et al. The relativity research of mine-earthquake and shallow-focus earthquake in Fuxin[J]. Metal Mine,2010(2):141-144.
-
期刊类型引用(3)
1. 关虓,程豪杰,秦卿,师红杰,唐丽云,程亮,任翔,张程华,高志刚. 竖向螺栓连接密拼叠合板受弯性能试验. 西安科技大学学报. 2025(02): 340-350 . 百度学术
2. 殷陈君,郑伊然,王璞. 基于文献计量的我国产品设计评价态势研究. 设计. 2024(19): 94-97 . 百度学术
3. 张旭辉,郭欢欢,马宏伟,车万里,潘格格,张超,赵友军,张玉良,毛清华,樊红卫,杜昱阳,薛旭升,王川伟,董明,刘鹏,夏晶,曹现刚. 基于生命周期的采煤机绿色评价方法研究及应用. 煤炭科学技术. 2021(06): 205-212 . 百度学术
其他类型引用(4)