Coal mine fire risk assessment based on AHP-FCE
-
摘要:
传统的煤矿火灾评价手段存在主观性强、评价指标不全面等问题,评价结果难以量化和横向比较,影响了火灾评价结果的客观性和准确性。针对上述问题,提出一种基于层次分析法(AHP)−模糊综合评价法(FCE)的煤矿火灾风险评价方法。针对煤矿火灾特点,构建了以“人、机、环、管”4个因素为一级指标,动火作业人员是否持动火证并接受培训、工作面推进度、回风隅角CO浓度、胶带附近浮煤是否及时清理等31个因素为二级指标的火灾指标评价体系;采用AHP确定2级指标的权重,指出“机”和“环”对火灾风险的影响较大;采用FCE计算矿井火灾风险评价向量,给出火灾风险综合评价值四色分级预警结果,并给出了二级指标的评分依据。基于乌东煤矿多次实时监测数据,采用基于AHP−FCE的煤矿火灾风险评价方法对该矿火灾风险进行评价,结果表明:乌东煤矿火灾风险较低,火灾风险为蓝色,与工程实际一致,证明了该评价方法具有较高的准确度。
Abstract:Traditional coal mine fire assessment methods are highly subjective and lack comprehensive evaluation indicators, making the results difficult to quantify and compare across cases, which affects their objectivity and accuracy. To address the above issues, a coal mine fire risk assessment method based on the Analytic Hierarchy Process (AHP) and Fuzzy Comprehensive Evaluation (FCE) was proposed. Based on the characteristics of coal mine fires, a fire risk assessment system was constructed, with four first-level indicators—Personnel, Equipment, Environment, and Management—and 31 second-level indicators. These included whether hot work personnel held valid permits and received training, the progress of the working face, CO concentration in the return air corner, and whether floating coal near the belt was promptly cleaned. AHP was used to determine the weights of the second-level indicators, indicating that Equipment and Environment had a greater impact on fire risk. FCE was applied to calculate the fire risk assessment vector of the mine, and a four-color graded early warning result was provided for the comprehensive fire risk assessment value, along with the scoring criteria for the second-level indicators. Based on multiple sets of real-time monitoring data from the Wudong Coal Mine, the AHP-FCE-based fire risk assessment method was used to evaluate the mine's fire risk. The results showed that the fire risk at Wudong Coal Mine was low and classified as blue, consistent with engineering practice, demonstrating that the proposed assessment method had high accuracy.
-
-
表 1 一级指标判断矩阵
Table 1 Judgment matrix of first-level indicators
一级指标 A1 A2 A3 A4 A1 1 1/9 1/8 1/2 A2 9 1 3 8 A3 8 1/3 1 7 A4 2 1/8 1/7 1 表 2 火灾风险综合评价值四色分级
Table 2 Four-color classification of comprehensive fire risk assessment values
火灾风险等级 蓝色 黄色 橙色 红色 评价值y ≥0.95 0.9~0.95 085~0.9 <0.8 表 3 火灾风险二级指标评分依据
Table 3 Scoring criteria for second-level indicators of fire risk
二级指标 四色分级阈值描述 A101 持证上岗:蓝色;未持证上岗:红色 A102 动火作业人员每年培训时间大于20学时:蓝色;
无培训或低于20学时:红色A103 所有工人单次入井时间小于8 h:蓝色;1名工人单次入井时间8~10 h:黄色;1名工人单次入井时间10~12 h:橙色;1名工人单次入井时间12 h以上:红色 A201 每月平均推进速度≥1倍正常推进速度:蓝色;0.75~1倍推进速度:黄色;0.5~0.75倍推进速度:橙色;低于0.5倍推进速度:红色 A202 满足注氮需求量,即1倍:蓝色;0.8~1倍:黄色;
0.6~0.8倍:橙色;小于0.6倍:红色A203 胶带托辊温度大于150 ℃:红色;90~150℃:橙色;
60~90℃:黄色;小于60℃:蓝色A204 O2体积分数相差0~0.02:蓝色;0.02~0.04:黄色;
0.04~0.06:橙色;大于0.06:红色A205 故障率0.02以上:红色;
0.015~0.02:橙色;
0.015~0.01:黄色;
0.01以下:蓝色A206 A207 A208 A209 报警时间1 min以内:蓝色;
1~5 min:黄色;
5~10 min:橙色;
大于10 min:红色A210 A211 A212 A213 A301 CO体积分数低于8×106:蓝色;8×106~16×106:黄色;16×106~24×106:橙色;24×106以上:红色 A302 漏风率≤0.1:蓝色;0.1~0.15:黄色;0.15~0.2:橙色;
大于0.2:红色A303 不同煤矿有所差别,该处数值作为参考: R2为0~0.45:低温氧化阶段,预警值,蓝色; R2为0.45~4:高温氧化阶段,临界值,黄色; R2为4~9:开始燃烧阶段,报警值,橙色; R2大于9:着火,红色 A304 采空区最高温度≤40 ℃:蓝色;40~60 ℃:黄色;
60~80℃:橙色;≥80 ℃:红色A305 未见乙烯:蓝色;出现乙烯:红色 A306 工作面回风流监测最高温度低于26 ℃:蓝色;26~30 ℃:黄色;30~34 ℃:橙色;高于34 ℃:红色 A307 有火成岩侵入:红色;无火成岩侵入;蓝色 A308 Ⅰ类易自燃及Ⅱ类自燃:红色;Ⅲ类不易自燃:蓝色 A401 每班清理胶带附近浮煤:蓝色;
某班存在胶带附近浮煤未清理现象:红色A402 防灭火技术人员每年考核且与绩效挂钩:蓝色;
防灭火技术人员无考核或考核未与绩效挂钩:红色A403 指标满足全部要求:蓝色;不符合1项:黄色;
不符合2项:橙色;不符合3项以上:红色A404 针对瓦斯抽采编制防火预案:蓝色;未编制防火预案:红色 A405 编制防灭火专项设计且有2种以上方案:蓝色;
未编制防灭火专项设计或仅有1套方案:红色A406 治理费用低于5元/t:红色;5~10元/t:
橙色;10~15元/t:黄色;大于15元/t:蓝色A407 动火作业实行审批制度:蓝色;无审批制度:红色 表 4 火灾风险等级评价
Table 4 Fire risk level assessment
二级指标 蓝 黄 橙 红 二级指标 蓝 黄 橙 红 A101 0.6 0.15 0.25 0 A301 0.9 0.1 0 0 A102 0.7 0.05 0.25 0 A302 0.8 0.15 0.05 0 A103 0.6 0.25 0.15 0 A303 0.7 0.1 0.2 0 A201 1 0 0 0 A304 0.65 0.1 0.25 0 A202 0.6 0.2 0.15 0.05 A305 0.7 0.2 0.1 0 A203 0.6 0.2 0.05 0.15 A306 0.65 0.2 0.15 0 A204 0.7 0.15 0.15 0 A307 0.85 0.05 0.1 0 A205 0.85 0.15 0 0 A308 0.65 0.1 0.25 0 A206 0.6 0.2 0.1 0.1 A401 0.65 0.2 0.15 0 A207 0.65 0.2 0.15 0 A402 1 0 0 0 A208 0.6 0.25 0.15 0 A403 0.65 0.15 0.2 0 A209 0.75 0.2 0.05 0 A404 0.7 0.3 0 0 A210 0.6 0.25 0.15 0 A405 0.65 0.05 0.3 0 A211 0.95 0 0.05 0 A406 0.7 0.2 0.1 0 A212 0.6 0.15 0.25 0 A407 0.6 0.2 0.2 0 A213 0.75 0.2 0.05 0 — — — — — -
[1] 刘志强,宋朝阳,程守业,等. 煤矿矿井建设技术与装备70余年创新发展及推广实践[J]. 煤炭科学技术,2024,52(1):65-83. DOI: 10.12438/cst.2024-0122 LIU Zhiqiang,SONG Zhaoyang,CHENG Shouye,et al. Seventy years innovation development and popularization practice of coal mine construction technology and equipment in China[J]. Coal Science and Technology,2024,52(1):65-83. DOI: 10.12438/cst.2024-0122
[2] 王云刚,崔春阳,张飞燕,等. 2011—2020年我国较大及以上煤矿事故统计分析及研究[J]. 安全与环境学报,2023,23(9):3269-3276. WANG Yungang,CUI Chunyang,ZHANG Feiyan,et al. Statistical analysis and research on major and above coal mine accidents in China from 2011 to 2020[J]. Journal of Safety and Environment,2023,23(9):3269-3276.
[3] 李敏,林志军,王德明,等. 我国煤矿重特大火灾事故统计分析[J]. 中国安全科学学报,2023,33(1):115-121. LI Min,LIN Zhijun,WANG Deming,et al. Statistical analysis of major coal mine fire accidents in China[J]. China Safety Science Journal,2023,33(1):115-121.
[4] 解学才,梁跃强,林辰,等. 矿井火灾事故预警系统[J]. 煤矿安全,2017,48(8):69-72. XIE Xuecai,LIANG Yueqiang,LIN Chen,et al. Early warning system for mine fire accidents[J]. Safety in Coal Mines,2017,48(8):69-72.
[5] 闫寿庆,董康宁,张连荣. 复杂煤层工作面推进中火灾预警技术研究[J]. 工矿自动化,2024,50(增刊1):96-99. YAN Shouqing,DONG Kangning,ZHANG Lianrong. Research on fire early warning technology in complex coal seam working face advancing[J]. Journal of Mine Automation,2024,50(S1):96-99.
[6] 谭艳春,张人伟,陈丽霞,等. 模糊综合评价在矿井内因火灾评价中的应用[J]. 中国安全生产科学技术,2010,6(5):114-117. DOI: 10.3969/j.issn.1673-193X.2010.05.021 TAN Yanchun,ZHANG Renwei,CHEN Lixia,et al. Application of fuzzy comprehensive evaluation in spontaneous mine fire assessment[J]. Journal of Safety Science and Technology,2010,6(5):114-117. DOI: 10.3969/j.issn.1673-193X.2010.05.021
[7] 芦庆和,许猛堂,刘萍,等. 一种改进煤矿内因火灾危险性评价方法[J]. 煤矿安全,2018,49(1):198-201. LU Qinghe,XU Mengtang,LIU Ping,et al. An improved method of fire risk assessment for coal mine[J]. Safety in Coal Mines,2018,49(1):198-201.
[8] 王树斌,王旭,闫世平,等. 基于Transformer的矿井内因火灾时间序列预测方法[J]. 工矿自动化,2024,50(3):65-70,91. WANG Shubin,WANG Xu,YAN Shiping,et al. Transformer based time series prediction method for mine internal caused fire[J]. Journal of Mine Automation,2024,50(3):65-70,91.
[9] 刘纪坤,袁雪颖,梁栋,等. G1−CRITIC组合赋权云模型下的储能电站火灾风险评价[J]. 西安科技大学学报,2024,44(3):447-455. LIU Jikun,YUAN Xueying,LIANG Dong,et al. Fire risk evaluation of energy storage power station based on G1-CRITIC combination weighting cloud model[J]. Journal of Xi'an University of Science and Technology,2024,44(3):447-455.
[10] WANG Linlin,TONG Ruigang. An improved evaluation of comprehensive for mine fire risk[C]. International Conference on Energy Material,Chemical Engineering and Mining Engineering,Qingdao,2019:1991-1997.
[11] 芦阳. 矿井通风系统抗火灾能力评价方法的研究[D]. 包头:内蒙古科技大学,2014. LU Yang. Study on evaluation method of the fire resistance capability of mine ventilation system[D]. Baotou:Inner Mongolia University of Science & Technology,2014.
[12] 常芳芳. 矿井通风系统安全评价及危险因素分析[J]. 能源与节能,2019(8):137-138. DOI: 10.3969/j.issn.2095-0802.2019.08.058 CHANG Fangfang. Safety evaluation and risk factor analysis of mine ventilation system[J]. Energy and Energy Conservation,2019(8):137-138. DOI: 10.3969/j.issn.2095-0802.2019.08.058
[13] 彭志昊,朱杰. 高瓦斯矿井火灾致因分析与评价[J]. 现代矿业,2020,36(9):212-214. DOI: 10.3969/j.issn.1674-6082.2020.09.059 PENG Zhihao,ZHU Jie. Cause analysis and evaluation of high gas mine fire[J]. Modern Mining,2020,36(9):212-214. DOI: 10.3969/j.issn.1674-6082.2020.09.059
[14] 李加州,马俊杰. 基于AHP−TOPSIS模型的某矿采场结构参数优选[J]. 金属矿山,2023(8):189-195. LI Jiazhou,MA Junjie. Optimization of stope structure parameters based on AHP-TOPSIS model of a mine[J]. Metal Mine,2023(8):189-195.
[15] 孙向宇,晁涛,王松艳,等. 基于灰色层次属性模型的评估指标综合方法[J]. 系统仿真学报,2018,30(2):699-706. SUN Xiangyu,CHAO Tao,WANG Songyan,et al. Synthetic evaluation method based on grey evaluation method and analytic hierarchy model theory[J]. Journal of System Simulation,2018,30(2):699-706.
[16] 郜彤,刘赟,黄鹤,等. 煤矿安全风险评价指标体系优化研究[J]. 煤矿安全,2020,51(12):296-300. GAO Tong,LIU Yun,HUANG He,et al. Study on optimization of coal mine safety risk evaluation index system[J]. Safety in Coal Mines,2020,51(12):296-300.
[17] 李红霞,张嘉琦,陈磊,等. 基于AHP−DEMATEL的煤矿安全管理水平评估研究[J]. 矿业研究与开发,2021,41(4):118-123. LI Hongxia,ZHANG Jiaqi,CHEN Lei,et al. Research on coal mine safety management level evaluation based on AHP-DEMATEL[J]. Mining Research and Development,2021,41(4):118-123.
[18] 赵安新,张育刚,韩安,等. 基于层次分析法的煤矿分级分层安全状态评估方法[J]. 煤炭技术,2021,40(3):162-165. ZHAO Anxin,ZHANG Yugang,HAN An,et al. Evaluation method of coal mine classification and layered safety state based on analytic hierarchy process[J]. Coal Technology,2021,40(3):162-165.
[19] 胡霞,钟文杰,程静静. 基于AHP和熵权法的煤矿安全态势评价模型[J]. 煤矿安全,2021,52(2):248-252. HU Xia,ZHONG Wenjie,CHENG Jingjing. Situational evaluation model of coal mine safety based on AHP and entropy weight method[J]. Safety in Coal Mines,2021,52(2):248-252.
[20] 廖文德,钟勇林,叶俊杰,等. 基于AHP−FCE法的煤矿瓦斯灾害危险源定量评价[J]. 煤炭科学技术,2015,43(6):85-90. LIAO Wende,ZHONG Yonglin,YE Junjie,et al. Quantitative evaluation method of mine gas disaster hazard sources based on AHP-FCE method[J]. Coal Science and Technology,2015,43(6):85-90.
[21] 赵志强,王勇,李晓俊,等. 基于AHP−FCE模型的露天煤矿外排土场边坡稳定性评价[J]. 露天采矿技术,2024,39(5):54-58. ZHAO Zhiqiang,WANG Yong,LI Xiaojun,et al. Slope stability evaluation of open-pit coal mine external dump based on AHP-FCE model[J]. Opencast Mining Technology,2024,39(5):54-58.
-
期刊类型引用(6)
1. 刘清,刘军锋. 基于UWB的综采工作面推进度测量系统. 工矿自动化. 2024(04): 33-40 . 本站查看
2. 刘超. 矿井通风安全监控系统优化研究. 煤矿机械. 2024(09): 190-192 . 百度学术
3. 郑学召,严瑞锦,蔡国斌,王宝元,何芹健. 矿井动目标精确定位技术及优化方法研究. 工矿自动化. 2023(02): 14-22 . 本站查看
4. 王苏洁. 煤峪口煤矿基于WSN井下人员定位系统设计研究. 山东煤炭科技. 2023(03): 202-204+207 . 百度学术
5. 李自森,毛馨凯,王洪亮. 选煤厂智能照明控制. 工矿自动化. 2022(S1): 124-125+132 . 本站查看
6. 白怡明,曾祥玉,李杰,辛凤阳,郭晓松,朱金龙. 基于卡尔曼滤波算法的UWB+IMU组合精确定位系统在选煤厂中的应用. 选煤技术. 2022(05): 85-90 . 百度学术
其他类型引用(3)