Comprehensive safety evaluation of mines based on entropy weight and set pair analysis method
-
摘要:
现有矿井安全评价方法的评价指标单一,对各类指标无法定量分析其不确定性程度,在实际工程应用中存在明显的局限性。针对上述问题,提出了一种基于熵权−集对分析法的矿井综合安全评价方法。首先,基于人、机、环、管4类因素构建了包含19个评价指标的矿井综合安全评价指标体系;然后,利用熵权法根据安全评价指标数据的离散程度自动确认权重,可有效避免主观干预,保持计算简便的同时兼具客观性与准确性;最后,采用专家打分的形式得出矿井安全评价指标分值,并通过集对分析方法计算各安全评价指标分值与不同风险等级之间的联系度,再利用加权平均法得出每个评价对象与不同风险等级之间的平均联系度,最终基于最大隶属度理论确定矿井安全风险等级。应用结果表明,通过该方法计算得到的小保当矿井风险等级为较低风险,与实际情况一致;该矿井不安全因素主要表现为实际操作过程中工人疲劳作业率较高,技术水平达标率较低,设备更新换代较慢,以及应急管理措施不完善、安全监查不及时等,可为后续改善矿井安全水平提供依据。
Abstract:The existing mine safety evaluation methods adopt relatively simple evaluation indicators and cannot quantitatively analyze the uncertainty degree of various indicators, resulting in significant limitations in practical engineering applications. To address these problems, a comprehensive mine safety evaluation method based on entropy weight and set pair analysis method is proposed. First, a comprehensive mine safety evaluation index system consisting of 19 indicators was constructed based on four factors: human, machine, environment, and management. Then, the entropy weight method was used to automatically determine the weights according to the degree of dispersion of the safety evaluation data, which could effectively avoid subjective interference while ensuring both simplicity of calculation and objectivity and accuracy. Finally, expert scoring was used to obtain the scores of each safety evaluation indicator, and set pair analysis method was applied to calculate the degree of connection between the indicator scores and different risk levels. The weighted average method was further adopted to obtain the average connection degree between each evaluation object and different risk levels. Based on the maximum membership degree theory, the final mine safety risk level was determined. The application results showed that the calculated risk level of Xiaobaodang Mine using this method was low, which was consistent with the actual situation. The main unsafe factors of the mine were high worker fatigue rate during actual operations, low compliance rate of technical standards, slow equipment updates, and incomplete emergency management measures and untimely safety inspections. The method can provide a reference for improving mine safety in the future.
-
-
表 1 安全风险等级划分及处理方式
Table 1 Classification and handling methods of safety risk levels
等级划分及处理 等级区间 处理方式 低风险 [0,1.6) 有序生产 较低风险 [1.6,4.8) 加强防范风险能力 中风险 [4.8,7.6) 密切监控风险 较高风险 [7.6,8.8) 立即整改 高风险 [8.8,10] 立即实行措施 表 2 矿井安全评价指标分值与权重值
Table 2 Mine safety evaluation index scores and weight values
评价指标 评价指标分值 权重值 专家1 专家2 专家3 专家4 专家5 技术水平不达标率 3.3 2.6 3.5 1.8 2.1 0.0202 违章作业率 2.8 3.2 3.1 2.5 2.7 0.0137 疲劳作业率 5.2 4.6 4.1 5.0 3.8 0.1313 电气设备失爆率 3.7 5.2 4.4 4.8 3.5 0.1026 通风系统完善程度 4.0 3.4 4.5 3.8 4.3 0.0371 设备更新率 5.2 3.9 5.6 4.7 3.5 0.1307 地质构造复杂程度 2.2 2.4 3.1 1.8 2.9 0.0197 煤层厚度变异性系数 3.0 2.6 1.9 3.1 2.3 0.0134 煤层自燃倾向性 2.1 2.5 1.7 2.6 3.1 0.0156 存在明火可能性 4.1 4.9 5.1 3.8 4.4 0.0577 瓦斯浓度 2.5 3.4 3.1 2.9 3.8 0.0075 粉尘分散度 4.6 3.2 3.9 4.2 5.1 0.0631 构造带透水 3.3 4.1 3.5 2.9 3.1 0.0109 人为作业导致透水 1.8 2.3 3.1 2.6 2.8 0.0153 顶底板稳定度 2.0 3.4 2.2 2.7 3.8 0.0114 安全管理制度完善程度 3.9 4.6 3.7 4.1 2.9 0.0524 安全组织机构完善程度 4.2 3.8 5.1 4.8 3.5 0.1111 应急管理措施完善程度 4.5 4.2 3.7 3.9 4.9 0.0453 安全监查及时程度 5.1 4.4 6.1 4.7 5.4 0.1410 表 3 矿井安全评价指标分值与不同风险等级之间的联系度
Table 3 Connection degree between mine safety evaluation index scores and different risk levels
评价指标 联系度 低风险 较低风险 中风险 较高风险 高风险 技术水平不达标率 0.3375 1.0000 − 0.3375 − 1.0000 − 1.0000 违章作业率 0.2125 1.0000 − 0.2125 − 1.0000 − 1.0000 疲劳作业率 − 0.8375 1.0000 0.8375 − 1.0000 − 1.0000 电气设备失爆率 − 0.7000 1.0000 0.7000 − 1.0000 − 1.0000 通风系统完善程度 − 0.5000 1.0000 0.5000 − 1.0000 − 1.0000 设备更新率 − 0.8625 1.0000 0.8625 − 1.0000 − 1.0000 地质构造复杂程度 0.4500 1.0000 − 0.4500 − 1.0000 − 1.0000 煤层厚度变异性系数 0.3875 1.0000 − 0.3875 − 1.0000 − 1.0000 煤层自燃倾向性 0.5000 1.0000 − 0.5000 − 1.0000 − 1.0000 存在明火可能性 − 0.7875 1.0000 0.7875 − 1.0000 − 1.0000 瓦斯浓度 0.0375 1.0000 − 0.0375 − 1.0000 − 1.0000 粉尘分散度 − 0.6250 1.0000 0.6250 − 1.0000 − 1.0000 构造带透水 − 0.1125 1.0000 0.1125 − 1.0000 − 1.0000 人为作业导致透水 0.4250 1.0000 − 0.4250 − 1.0000 − 1.0000 顶底板稳定度 0.2375 1.0000 − 0.2375 − 1.0000 − 1.0000 安全管理制度完善程度 − 0.4000 1.0000 0.4000 − 1.0000 − 1.0000 安全组织机构完善程度 − 0.6750 1.0000 0.6750 − 1.0000 − 1.0000 应急管理措施完善程度 − 0.6500 1.0000 0.6500 − 1.0000 − 1.0000 安全监查及时程度 − 1.0000 0.7571 1.0000 − 0.7571 − 1.0000 表 4 风险等级评价结果
Table 4 Risk level evaluation results
平均联系度 评价结果 低风险 较低风险 中风险 较高风险 高风险 − 0.6245 0.9658 0.6245 − 0.9658 − 1.0000 较低风险 -
[1] 张迪,郑义. 基于合作博弈法的RBF神经网络矿井通风系统风险监测预警模型[J]. 能源与环保,2024,46(11):11-15. ZHANG Di,ZHENG Yi. RBF neural network risk monitoring and early warning model of mine ventilation system based on cooperative game method[J]. China Energy and Environmental Protection,2024,46(11):11-15.
[2] 景国勋,田国良,蒋方. 2016—2022年我国煤矿顶板事故统计分析及防治对策[J]. 煤炭工程,2023,55(10):74-79. JING Guoxun,TIAN Guoliang,JIANG Fang. Statistical analysis and countermeasures of coal mine roof accidents from 2016 to 2022[J]. Coal Engineering,2023,55(10):74-79.
[3] 罗领. 地下采矿安全技术与事故预防策略[J]. 世界有色金属,2024(20):177-179. DOI: 10.3969/j.issn.1002-5065.2024.20.058 LUO Ling. Underground mining safety technology and accident prevention strategies[J]. World Nonferrous Metals,2024(20):177-179. DOI: 10.3969/j.issn.1002-5065.2024.20.058
[4] 沈义祥,石笑天,胡宏. 注马丽散技术在掘进巷道过溶洞溶蚀区的应用[J]. 现代矿业,2025,41(3):239-242. DOI: 10.3969/j.issn.1674-6082.2025.03.049 SHEN Yixiang,SHI Xiaotian,HU Hong. Application of malisan injection technology of tunneling roadway passing through karst cave dissolution area[J]. Modern Mining,2025,41(3):239-242. DOI: 10.3969/j.issn.1674-6082.2025.03.049
[5] 於昌峰,姜春露,吴云. 基于正向−反向高压注水试验的深部矿井断层阻水性特征研究[J]. 金属矿山,2025(2):131-137. YU Changfeng,JIANG Chunlu,WU Yun. Study on fault water resistance characteristics of deep mine based on forward-reverse high pressure water injection test[J]. Metal Mine,2025(2):131-137.
[6] 姜培根,蔚登峰,刘新龙,等. 金属矿井火灾疏散路径模拟与研究[J]. 金属矿山,2023,52(10): 231-239. JIANG Peigen,YU Dengfeng,LIU Xinlong,et al. Simulation and study of evacuation paths for metal mine fires[J]. Metal Mine,2023(10): 231-239.
[7] WEI Chunfu,PEI Zheng,LI Huamin. An induced OWA operator in coal mine safety evaluation[J]. Journal of Computer and System Sciences,2012,78(4):997-1005. DOI: 10.1016/j.jcss.2011.11.003
[8] 王未来,张文清. 煤矿安全管理制度有效性评价指标体系构建[J]. 煤炭技术,2025,44(2):264-267. WANG Weilai,ZHANG Wenqing. Construction of index system for evaluating effectiveness of coal mine safety management system[J]. Coal Technology,2025,44(2):264-267.
[9] 夏永亮. 基于GRA−RBF神经网络模型的煤矿安全风险预控管理安全风险评价研究[J]. 中国矿业,2024,33(9):51-57. DOI: 10.12075/j.issn.1004-4051.20241321 XIA Yongliang. Safety risk assessment in coal mine safety risk pre control management based on GRA-RBF neural network model[J]. China Mining Magazine,2024,33(9):51-57. DOI: 10.12075/j.issn.1004-4051.20241321
[10] 程磊,史浩镕,贺智勇,等. 基于变权−云模型的煤矿安全生产评价研究[J]. 河南理工大学学报(自然科学版),2024,43(5):10-18. CHENG Lei,SHI Haorong,HE Zhiyong,et al. Research on coal mine safety production evaluation based on variable weight-cloud model[J]. Journal of Henan Polytechnic University (Natural Science),2024,43(5):10-18.
[11] 郭鑫,许开立,陈守坤. 基于AHP−模糊综合评价法的矿井作业人员作业能力分析[J]. 工业安全与环保,2021,47(11):60-64. DOI: 10.3969/j.issn.1001-425X.2021.11.014 GUO Xin,XU Kaili,CHEN Shoukun. Operational ability analysis of mine operators based on AHP-fuzzy comprehensive evaluation method[J]. Industrial Safety and Environmental Protection,2021,47(11):60-64. DOI: 10.3969/j.issn.1001-425X.2021.11.014
[12] HAN Shuai,CHEN Hong,LONG Ruyin,et al. Evaluation of the derivative environment in coal mine safety production systems:case study in China[J]. Journal of Cleaner Production,2017,143:377-387. DOI: 10.1016/j.jclepro.2016.12.096
[13] 姜青峰,刘健. 基于集对分析联系数模型的矿井火灾安全评价[J]. 煤矿安全,2022,53(5):182-187. JIANG Qingfeng,LIU Jian. Mine fire safety evaluation based on set pair analysis connection number model[J]. Safety in Coal Mines,2022,53(5):182-187.
[14] 张顺堂,吴昌友. 基于熵权可变模糊评价模型的矿井火灾安全性评价[J]. 数学的实践与认识,2018,48(23):175-182. ZHANG Shuntang,WU Changyou. Evaluation of mine fire safety based on entropy weight variable fuzzy evaluation model[J]. Mathematics in Practice and Theory,2018,48(23):175-182.
[15] 王淑云,黄芳,谭雄,等. 熵权法在铀矿井下空气环境安全评价中的应用研究[J]. 安全与环境学报,2021,21(2):538-545. WANG Shuyun,HUANG Fang,TAN Xiong,et al. Application of entropy method in safety evaluation of air environment in uranium mines[J]. Journal of Safety and Environment,2021,21(2):538-545.
[16] 殷涛,谢雄刚. 矿井内因火灾的安全评价研究——基于熵值法和突变理论[J]. 矿业安全与环保,2020,47(2):120-124. YIN Tao,XIE Xionggang. Study on safety evaluation of internal-caused fire in mine—based on entropy method and catastrophe theory[J]. Mining Safety & Environmental Protection,2020,47(2):120-124.
[17] 刘征,胡汉华,崔田田,等. 基于改进的模糊层次分析法的矿井通风系统安全评价[J]. 矿业研究与开发,2011,31(3):81-84. LIU Zheng,HU Hanhua,CUI Tiantian,et al. Safety evaluation of mine ventilation system based on improved fuzzy analytic hierarchy process[J]. Mining Research and Development,2011,31(3):81-84.
[18] 张景钢,王清焱,赵淑枫. 基于贝叶斯网络的HAZOP−LOPA煤矿安全风险评价方法应用研究[J]. 矿业安全与环保,2022,49(1):114-120. ZHANG Jinggang,WANG Qingyan,ZHAO Shufeng. Application of HAZOP-LOPA coal mine safety risk assessment method based on Bayesian network[J]. Mining Safety & Environmental Protection,2022,49(1):114-120.
[19] 邱筱璇,曹庆贵,刘卿,等. 基于改进博弈论和二维云模型的煤矿安全评价方法研究[J]. 煤矿机械,2021,42(7):197-201. QIU Xiaoxuan,CAO Qinggui,LIU Qing,et al. Research on coal mine safety evaluation method based on improved game theory and two-dimensional cloud model[J]. Coal Mine Machinery,2021,42(7):197-201.
[20] 白丽丽,白尚旺,党伟超,等. 基于离差最大化组合赋权的煤矿安全评价研究[J]. 计算机应用与软件,2021,38(4):82-87. DOI: 10.3969/j.issn.1000-386x.2021.04.014 BAI Lili,BAI Shangwang,DANG Weichao,et al. Coal mine safety assessment based on maximum deviation combination empowerment[J]. Computer Applications and Software,2021,38(4):82-87. DOI: 10.3969/j.issn.1000-386x.2021.04.014
[21] 郭隆鑫,李希建,刘柱,等. 基于融合权集对云的煤矿安全评价及应用[J]. 中国安全生产科学技术,2021,17(2):65-70. GUO Longxin,LI Xijian,LIU Zhu,et al. Evaluation of coal mine safety based on fusion weight and set pair cloud and its application[J]. Journal of Safety Science and Technology,2021,17(2):65-70.
[22] 杨奇峰. 煤矿顶板事故风险因素耦合机理及防控策略研究[D]. 徐州:中国矿业大学,2022. YANG Qifeng. Study on coupling mechanism and prevention and control strategy of coal mine roof accident risk factors[D]. Xuzhou:China University of Mining and Technology,2022.
[23] 吴占稳,张文. 改进熵权法及其在起重机安全评价中的应用[J]. 机械设计与研究,2022,38(1):207-210. WU Zhanwen,ZHANG Wen. Improved entropy method and its application in crane safety evaluation[J]. Machine Design & Research,2022,38(1):207-210.
[24] 赵克勤. 集对分析在系统智能预测中的应用综述[J]. 智能系统学报,2022,17(2):233-247. DOI: 10.11992/tis.202103023 ZHAO Keqin. Application overview of set pair analysis in intelligent prediction system[J]. CAAI Transactions on Intelligent Systems,2022,17(2):233-247. DOI: 10.11992/tis.202103023
[25] 景国勋,张静丽,贾智伟,等. 基于集对分析的煤矿水害风险评价[J]. 安全与环境学报,2022,22(2):566-572. JING Guoxun,ZHANG Jingli,JIA Zhiwei,et al. Research on coal mine permeable risk assessment based on the set pair analysis method[J]. Journal of Safety and Environment,2022,22(2):566-572.
-
期刊类型引用(4)
1. 刘力卿, 张弛, 顿超, 李杰, 边胜利, 季洪鑫. 变压器巡检机器鱼无线充电系统互感识别方法. 测控技术. 2025(07) 百度学术
2. 万勇. 磁谐振无线充电技术在矿用传感器上的应用研究. 自动化仪表. 2025(06) 百度学术
3. 王孟旭,郑晓亮,陈旭. 磁耦合WPT系统中的线圈特性仿真分析. 佳木斯大学学报(自然科学版). 2024(05): 16-20 . 百度学术
4. 刘旭,宋翔昱,原熙博,夏晨阳,伍小杰. 一种利用可切换补偿电容的三线圈无线电能传输系统互感识别及效率优化方法. 中国电机工程学报. 2022(22): 8309-8321 . 百度学术
其他类型引用(12)