基于链式基站坐标融合的采煤机定位方法

杨艺, 孙英杰, 常亚军, 刘斌斌, 王科平

杨艺,孙英杰,常亚军,等. 基于链式基站坐标融合的采煤机定位方法[J]. 工矿自动化,2025,51(5):49-56. DOI: 10.13272/j.issn.1671-251x.2024120009
引用本文: 杨艺,孙英杰,常亚军,等. 基于链式基站坐标融合的采煤机定位方法[J]. 工矿自动化,2025,51(5):49-56. DOI: 10.13272/j.issn.1671-251x.2024120009
YANG Yi, SUN Yingjie, CHANG Yajun, et al. Coal shearer positioning method based on chain-style base station coordinate fusion[J]. Journal of Mine Automation,2025,51(5):49-56. DOI: 10.13272/j.issn.1671-251x.2024120009
Citation: YANG Yi, SUN Yingjie, CHANG Yajun, et al. Coal shearer positioning method based on chain-style base station coordinate fusion[J]. Journal of Mine Automation,2025,51(5):49-56. DOI: 10.13272/j.issn.1671-251x.2024120009

基于链式基站坐标融合的采煤机定位方法

基金项目: 

河南省科技攻关项目(232102210040)。

详细信息
    作者简介:

    杨艺(1980—),男,湖北利川人,副教授,博士,研究方向为模式识别与智能系统,E-mail:yangyi@hpu.edu.cn

    通讯作者:

    孙英杰(1999—),男,河南郑州人,硕士研究生,研究方向为电机电器及其控制,E-mail:syj107@outlook.com

  • 中图分类号: TD679

Coal shearer positioning method based on chain-style base station coordinate fusion

  • 摘要:

    在采煤工作面狭长的空间中,超宽带(UWB)基站呈链式分布,通信信号传输的散射、绕射和衰减等扰动和基站间动态坐标融合机制的缺乏均降低了采煤机定位精度。为提高采煤机在工作面UWB基站下的定位精度,提出了一种基于链式基站坐标融合的采煤机定位方法。建立了适应采煤过程中UWB基站位置动态变化的采煤机运动模型,采用无迹卡尔曼滤波(UKF)处理UWB测量偏转角,建立了基于UWB基站空间分布特征的链式基站坐标融合模型,以减少时变扰动的影响,采用梯度下降法对采煤机和液压支架群间的位置误差进行迭代优化,提升绝对坐标系下采煤机定位精度,并利用卡尔曼滤波(KF)对基站坐标数据进行滤波,消除梯度下降造成的误差叠加,实现高精度定位。实验结果表明:在±40°范围内,UWB测量偏转角经UKF处理后误差为±5°;在基站间天线平行、非平行情况下,KF链式基站坐标融合方法的均方误差(MSE)较传统刚性基站坐标融合分别降低了91.3%,95.8%,均方根误差(RMSE)分别降低了70.5%,95.5%;在基站间无遮挡、部分遮挡及全遮挡条件下,KF链式基站坐标融合方法实现了较高的采煤机定位精度和稳定性。

    Abstract:

    In the narrow and elongated space of the coal mining face, Ultra-Wideband (UWB) base stations are distributed in a chain-like manner. Disturbances such as scattering, diffraction, and attenuation of communication signal transmission, along with the lack of a dynamic coordinate fusion mechanism among base stations, all reduce the positioning accuracy of the coal shearer. To improve the positioning accuracy of the coal shearer under UWB base stations on the working face, a coal shearer positioning method based on chain-style base station coordinate fusion is proposed. A coal shearer motion model adapting to the dynamic position changes of UWB base stations during the mining process was established. The Unscented Kalman Filter (UKF) was used to process the UWB measured deflection angle, and a chain-style base station coordinate fusion model based on the spatial distribution characteristics of UWB base stations was constructed to reduce the influence of time-varying disturbances. The gradient descent method was employed to iteratively optimize the position error between the coal shearer and the hydraulic support group, enhancing the coal shearer positioning accuracy in the absolute coordinate system. Furthermore, Kalman Filter (KF) was applied to filter the base station coordinate data to eliminate error accumulation caused by gradient descent, achieving high-precision positioning. Experimental results showed that within a ±40° range, the error of the UWB measured deflection angle after UKF processing was ±5°. Under conditions of antenna parallelism and non-parallelism between base stations, the Mean Squared Error (MSE) of the KF chain-style base station coordinate fusion method decreased by 91.3% and 95.8%, respectively, compared to traditional rigid coordinate fusion, and the Root Mean Squared Error (RMSE) decreased by 70.5% and 95.5%, respectively. Under conditions of no obstruction, partial obstruction, and full obstruction between base stations, the KF chain-style base station coordinate fusion method achieves higher positioning accuracy and stability for the coal shearer.

  • 图  1   含有时变扰动的采煤机运动模型

    Figure  1.   Shearer motion model with time-varying disturbances

    图  2   链式基站坐标融合模型

    Figure  2.   Chain-style base station coordinate fusion model

    图  3   UWB基站与标签布置实验场景

    Figure  3.   Experimental scenario of UWB base stations and tags deployment

    图  4   采煤机与液压支架间相对角度滤波效果

    Figure  4.   Relative angle filtering effect between shearer and hydraulic support

    图  5   基站间天线平行条件下基站坐标散点图及分布直方图

    Figure  5.   Scatter plot and distribution histogram of base station coordinates under the condition of parallel antennas between base stations

    图  6   基站间天线非平行条件下基站坐标散点图及分布直方图

    Figure  6.   Scatter plot and distribution histogram of base station coordinates under the condition of non-parallel antennas between base stations

    图  7   NLOS遮挡模拟实验场景

    Figure  7.   Experimental scenario of NLOS occlusion simulation

    图  8   不同遮挡程度下基站坐标散点图

    Figure  8.   Scatter plot of base station coordinates under different degrees of occlusion

    图  9   采煤机移动工况下的定位实验结果

    Figure  9.   Positioning experiment results under the shearer's moving conditions

    表  1   采煤机与液压支架间相对角度滤波误差

    Table  1   Relative angle filtering error between shearer and hydraulic support

    采煤机与
    液压支架间
    相对角度/(°)
    采煤机与
    液压支架
    垂直距离/m
    EKF UKF
    平均误
    差/(°)
    标准
    差/(°)
    平均误
    差/(°)
    标准
    差/(°)
    −401.01.676 25.360 91.162 02.034 6
    1.6−0.258 44.418 80.152 22.034 1
    401.03.026 03.382 32.303 41.507 8
    1.62.381 44.680 51.898 42.149 2
    下载: 导出CSV

    表  2   基站间天线平行条件下基站坐标误差对比

    Table  2   Comparison of base station coordinate errors under the condition of parallel antennas between base stations

    方法MSE/m2RMSE/m
    刚性基站坐标融合0.101 7820.319 033
    链式基站坐标融合0.047 6510.218 292
    KF链式基站坐标融合0.008 8840.094 256
    下载: 导出CSV

    表  3   基站间天线非平行条件下基站坐标误差对比

    Table  3   Comparison of base station coordinate errors under the condition of non-parallel antennas between base stations

    方法MSE/m2RMSE/m
    刚性基站坐标融合7.329 4542.707 297
    链式基站坐标融合0.141 2790.375 871
    KF链式基站坐标融合0.014 9210.122 152
    下载: 导出CSV
  • [1] 国家能源局. 国家能源局关于印发《煤矿智能化标准体系建设指南》的通知[EB/OL]. [2024-11-13]. https://zfxxgk.nea.gov.cn/2024-03/13/c_1310768359.htm.

    National Energy Administration. Notice of the National Energy Administration on issuing the Guidelines for the Construction of the Intelligent Coal Mine Standard System[EB/OL]. [2024-03-13]. https://zfxxgk.nea.gov.cn/2024-03/13/c_1310768359.htm.

    [2] 袁智,蒋庆友,庞振忠. 我国煤矿智能化综采开采技术装备应用现状与发展思考[J]. 煤炭科学技术,2024,52(9):189-198. DOI: 10.12438/cst.2024-1054

    YUAN Zhi,JIANG Qingyou,PANG Zhenzhong. Application status and development thinking of intelligent mining technology and equipment in coal mines in China[J]. Coal Science and Technology,2024,52(9):189-198. DOI: 10.12438/cst.2024-1054

    [3] 谢巧军,蒙昱璋. 基于UWB技术的采煤机定位系统[J]. 智能矿山,2023,4(11):72-77.

    XIE Qiaojun,MENG Yuzhang. Positioning system of shearer based on UWB technology[J]. Journal of Intelligent Mine,2023,4(11):72-77.

    [4]

    SUN Jialan. Enhancing coal mining efficiency:a unified platform for intelligent management and control[J]. International Journal of Distributed Systems & Technologies,2024,15(1). DOI: 10.4018/IJDST.338327.

    [5] 郑江涛,李四海,刘士明,等. 基于惯导和激光雷达的采煤机定位方法[J]. 中国惯性技术学报,2020,28(5):595-602.

    ZHENG Jiangtao,LI Sihai,LIU Shiming,et al. Positioning method of a shearer based on inertial navigation and lidar[J]. Journal of Chinese Inertial Technology,2020,28(5):595-602.

    [6] 王世佳. 异类多源信息融合的采煤机定位技术研究[D]. 徐州:中国矿业大学,2021.

    WANG Shijia. Research on shearer positioning technology with heterogeneous multi-source information fusion[D]. Xuzhou:China University of Mining and Technology,2021.

    [7] 曹波. 采煤机惯导与超宽带融合定位方法研究[D]. 徐州:中国矿业大学,2022.

    CAO Bo. Research on fusion localization approach of IMU and ultra-wideband for shearer[D]. Xuzhou:China University of Mining and Technology,2022.

    [8] 田竹青. 基于BP混合优化的采煤机惯导定位方法研究[J]. 矿业装备,2025(1):175-177. DOI: 10.3969/j.issn.2095-1418.2025.01.057

    TIAN Zhuqing. Research on inertial navigation positioning method of shearer based on BP hybrid optimization[J]. Mining Equipment,2025(1):175-177. DOI: 10.3969/j.issn.2095-1418.2025.01.057

    [9] 陈路,谢维斯,谭杰,等. 面向移动机器人的多传感器紧耦合导航定位方法[J/OL]. 电子科技大学学报:1-7 [2025-05-14]. http://kns.cnki.net/kcms/detail/51.1207.TN.20250414.1110.008.html.

    CHEN Lu,XIE Weisi,TAN Jie,et al. A tightly coupled multi-sensor fusion navigation and localization method for mobile robots[J/OL]. Journal of University of Electronic Science and Technology of China:1-7[2025-05-14]. http://kns.cnki.net/kcms/detail/51.1207.TN.20250414.1110.008.html.

    [10] 魏岚焘. 煤矿井下UWB定位系统的设计与实现[D]. 包头:内蒙古科技大学,2023.

    WEI Lantao. Design and implementation of UWB positioning system in underground coal mine[D]. Baotou:Inner Mongolia University of Science & Technology,2023.

    [11] 戚群涛. 矿井环境下基于改进卡尔曼滤波的UWB定位算法研究[D]. 包头:内蒙古科技大学,2023.

    QI Quntao. Research on UWB location algorithm based on improved Kalman filter in underground coal mine environment[D]. Baotou:Inner Mongolia University of Science & Technology,2023.

    [12] 曹波,王世博,葛世荣,等. 基于IMU/UWB的井下采煤工作面端头采煤机定位试验研究[J]. 煤炭科学技术,2023,51(6):217-228.

    CAO Bo,WANG Shibo,GE Shirong,et al. Research on shearer positioning experiment based on IMU and UWB at the end of underground coal mining working face[J]. Coal Science and Technology,2023,51(6):217-228.

    [13] 葛世荣,王世佳,曹波,等. 智能采运机组自主定位原理与技术[J]. 煤炭学报,2022,47(1):75-86.

    GE Shirong,WANG Shijia,CAO Bo,et al. Autonomous positioning principle and technology of intelligent shearer and conveyor[J]. Journal of China Coal Society,2022,47(1):75-86.

    [14]

    CAO Bo,JIANG Mingrui,LI Menglan,et al. Improving accuracy of the IMU/UWB fusion positioning approach utilizing ESEKF and VBUKF for underground coal mining working face[J]. IEEE Internet of Things Journal,2025. DOI: 10.1109/JIOT.2025.3555395.

    [15] 沈国杰,周德胜,郑雪娜,等. 基于UWB的矿井巷道精准三维定位系统设计[J]. 矿业安全与环保,2020,47(6):80-84.

    SHEN Guojie,ZHOU Desheng,ZHENG Xuena,et al. Design of precise 3D positioning system for mine roadway based on UWB[J]. Mining Safety & Environmental Protection,2020,47(6):80-84.

    [16] 张海军,孙学成,赵小虎,等. 煤矿井下UWB人员定位系统研究[J]. 工矿自动化,2022,48(2):29-34,41.

    ZHANG Haijun,SUN Xuecheng,ZHAO Xiaohu,et al. Research on UWB personnel positioning system in coal mine[J]. Industry and Mine Automation,2022,48(2):29-34,41.

    [17]

    LI Shilei,LI Lijing,SHI Dawei,et al. Multi-kernel maximum correntropy Kalman filter for orientation estimation[J]. IEEE Robotics and Automation Letters,2022,7(3):6693-6700. DOI: 10.1109/LRA.2022.3176798

    [18]

    LIU Wei,LI Jiapeng,FENG Minyu,et al. Robust distributed adaptation under multikernel correntropy[J]. IEEE Transactions on Circuits and Systems II:Express Briefs,2023,70(1):341-345.

    [19]

    DENG Zhihong,SHI Lei,YIN Lijian,et al. UKF based on maximum correntropy criterion in the presence of both intermittent observations and non-Gaussian noise[J]. IEEE Sensors Journal,2020,20(14):7766-7773. DOI: 10.1109/JSEN.2020.2980354

    [20] 黄鑫,张成炜,韦周旺,等. 基于UWB−PDOA的少基站自适应定位系统研究[J]. 测控技术,2024,43(5):85-92.

    HUANG Xin,ZHANG Chengwei,WEI Zhouwang,et al. UWB-PDOA based adaptive positioning system with few base stations[J]. Measurement & Control Technology,2024,43(5):85-92.

    [21] 杨海峰,王宇翔. 多模型自校准无迹Kalman滤波方法[J]. 航空动力学报,2024,39(8):415-420.

    YANG Haifeng,WANG Yuxiang. Multiple-model self-calibration unscented Kalman filter method[J]. Journal of Aerospace Power,2024,39(8):415-420.

图(9)  /  表(3)
计量
  • 文章访问数:  103
  • HTML全文浏览量:  15
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-03
  • 修回日期:  2025-05-22
  • 网络出版日期:  2025-05-12
  • 刊出日期:  2025-05-14

目录

    WANG Keping

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回