基于深度卷积神经网络的井下人员目标检测

唐士宇, 朱艾春, 张赛, 曹青峰, 崔冉, 华钢

唐士宇,朱艾春,张赛,等.基于深度卷积神经网络的井下人员目标检测[J].工矿自动化,2018,44(11):32—36.. DOI: 10.13272/j.issn.1671—251x.2018050068
引用本文: 唐士宇,朱艾春,张赛,等.基于深度卷积神经网络的井下人员目标检测[J].工矿自动化,2018,44(11):32—36.. DOI: 10.13272/j.issn.1671—251x.2018050068
TANG Shiyu, ZHU Aichun, ZHANG Sai, CAO Qingfeng, CUI Ran, HUA Gang. Target detection of underground personnel based on deep convolutional neural network[J]. Journal of Mine Automation, 2018, 44(11): 32-36. DOI: 10.13272/j.issn.1671—251x.2018050068
Citation: TANG Shiyu, ZHU Aichun, ZHANG Sai, CAO Qingfeng, CUI Ran, HUA Gang. Target detection of underground personnel based on deep convolutional neural network[J]. Journal of Mine Automation, 2018, 44(11): 32-36. DOI: 10.13272/j.issn.1671—251x.2018050068

基于深度卷积神经网络的井下人员目标检测

基金项目: 

国家自然科学基金项目(51574232)

详细信息
  • 中图分类号: TD67

Target detection of underground personnel based on deep convolutional neural network

  • 摘要: 针对以人为中心的井下视频监控模式存在持续时间受限、多场景同时监视困难、人工监视结果处理不及时等问题,提出了基于深度卷积神经网络的井下人员目标检测方法。首先将输入图片缩放为固定尺寸,通过深度卷积神经网络操作后形成特征图;然后,通过区域建议网络在特征图上形成建议区域,并将建议区域池化为统一大小,送入全连接层进行运算;最后,根据概率分数高低选择最好的建议区域,自动生成需要的目标检测框。测试结果表明,该方法可以成功检测出矿井工作人员的头部目标,准确率达到87.6%。
    Abstract: In view of problems that human—centered video monitoring mode had limited duration, multiple scenes were difficult to monitor at the same time, and results of manual monitoring were not processed in time, target detection method of underground personnel based on deep convolutional neural network was proposed. Firstly, input image was scaled to a fixed size, and a feature map was formed after operation of deep convolutional neural network; then, a suggestion area was formed on the feature map through area suggestion network, the suggestion area was pooled into a unified size which was sent to full connection layer for operation; finally, the best suggestion area was selected according to probability score, and the required target detection box was automatically generated. The test results show that the method can successfully detect head of underground personnel with an accuracy rate of 87.6%.
  • 期刊类型引用(9)

    1. 毛清华,胡鑫,王孟寒,张旭辉,薛旭升. 改进YOLOv5s的采煤机滚筒与支架护帮板干涉状态智能识别. 煤炭科学技术. 2024(02): 253-263 . 百度学术
    2. 王新航. 煤矿安全目标检测技术研究进展. 能源与节能. 2023(04): 118-120 . 百度学术
    3. 陈立烨,党浚哲,崔子航,陈思妍,段琦锋. 基于FocalLoss的煤矿井下人员安全视觉监测方法. 现代信息科技. 2023(13): 96-100 . 百度学术
    4. 刘丁源,冯锋. 矿井下人员安全检测技术分析. 信息与电脑(理论版). 2022(15): 41-43+47 . 百度学术
    5. 魏智锋,肖书浩,蒋国璋,伍世虔,程国飞. 基于深度学习的人造板表面缺陷检测研究. 林产工业. 2021(02): 21-26 . 百度学术
    6. 董昕宇,师杰,张国英. 基于参数轻量化的井下人体实时检测算法. 工矿自动化. 2021(06): 71-78 . 本站查看
    7. 杨建伟,涂兴子,梅峰漳,李亚宁,范鑫杰. 基于深度学习优化YOLOV3算法的芳纶带检测算法研究. 中国矿业. 2020(04): 67-72 . 百度学术
    8. 孙杰臣,李敬兆,王继伟,许志. 煤矿井下人车联动控制系统. 工矿自动化. 2020(12): 7-12 . 本站查看
    9. 张春堂,管利聪. 基于SSD-MobileNet的矿工安保穿戴设备检测系统. 工矿自动化. 2019(06): 96-100 . 本站查看

    其他类型引用(18)

计量
  • 文章访问数:  78
  • HTML全文浏览量:  13
  • PDF下载量:  23
  • 被引次数: 27
出版历程
  • 刊出日期:  2018-11-09

目录

    /

    返回文章
    返回