Trajectory tracking control of trackless rubber-tired vehicles in underground mines under multi-sensor time delays
-
摘要:
井工矿无人驾驶系统通常采用基于视觉和激光雷达传感器的SLAM算法进行场景重建和车辆定位。但井下环境粉尘密度大、照明条件差,复杂的基于感知的定位算法会有显著的计算时延,而且井下车辆大多采用改装解决方案,不可避免地存在执行器时延。上述因素会产生累积效应,因此有必要研究多传感器时延下井工矿无轨胶轮车轨迹跟踪控制。构建了车辆横向控制动力学模型,提出了2种建模方法来分析时延对车辆动力学控制稳定性的影响,一种是状态增广建模方法,另一种是基于构造Lyapunov泛函的方法。利用CarSim和Simulink构建井下车辆轨迹跟踪控制仿真测试环境,仿真结果表明,在关注相对于参考轨迹的平均跟踪距离误差时,需要限制感知算法的时延和定位标准差;当存在与安全相关的最大跟踪距离误差约束时,应优先考虑感知算法的时延要求。
Abstract:The underground mine unmanned driving system typically uses SLAM algorithms based on vision and Light Detection and Ranging (LiDAR) sensors for scene reconstruction and vehicle positioning. However, in underground environments, the dust density is high, and lighting conditions are poor, making complex perception-based positioning algorithms prone to significant computational delays. Additionally, most underground vehicles use modified solutions, which inevitably introduce actuator delays. These factors can have a cumulative effect, making it necessary to study trajectory tracking control for underground mine trackless rubber-tired vehicles under multi-sensor delays. A lateral control dynamics model for the vehicle was developed, and two modeling methods were proposed to analyze the impact of delays on the stability of vehicle dynamics control: one was the state augmented modeling method, and the other was the Lyapunov functional-based method. The CarSim and Simulink platforms were used to construct a simulation testing environment for underground vehicle trajectory tracking control. Simulation results indicated that when focusing on the average tracking distance error relative to the reference trajectory, it was necessary to limit the delay of the perception algorithm and the standard deviation of positioning. When there was a maximum tracking distance error constraint related to safety, the delay requirements of the perception algorithm should be prioritized.
-
-
表 1 无轨胶轮车参数
Table 1 Parameters of trackless rubber-tired vehicles
参数 值 参数 值 车长/mm 5 950 后悬/mm 1 430 车宽/mm 2 050 前轮最大转角/rad 0.6 轴距/mm 3 360 最高车速/(km·h−1) 35 前悬/mm 1 160 最大爬坡度/(°) 14 表 2 仿真参数设置
Table 2 Settings of simulation parameters
参数 数值 反馈增益 [ 0.0147 0.0129 0.3091 0.0428 ]控制周期/ms 50 执行器时延范围/ms <100 测试感知时延仿真参数/ms 50, 100, 150, 200, 250, 300, 350, 400 测试定位误差标准差仿真参数/m 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 -
[1] PAN Jian,XU Qing,LI Keqiang,et al. A vehicle cloud control system considering communication quantization and stochastic delay[J]. Asian Journal of Control,2023,25(5):3616-3631. DOI: 10.1002/asjc.3045
[2] 崔邵云,鲍久圣,李芳威,等. 基于多源里程融合的井下无人驾驶自主导航SLAM方法 [J/OL]. 煤炭科学技术:1-10 [2025-01-18]. http://kns.cnki.net/kcms/detail/11.2402.td.20240925.1231.002.html. CUI Shaoyun,BAO Jiusheng,LI Fangwei,et al. Multi-source odometry fusion-based underground unmanned autonomous navigation SLAM method[J/OL]. Coal Science and Technology:1-10[2025-01-18]. http://kns.cnki.net/kcms/detail/11.2402.td.20240925.1231.002.html.
[3] HAO Mingrui,YUAN Xiaoming,REN Jie,et al. Research on downhole MTATBOT positioning and autonomous driving strategies based on odometer-assisted inertial measurement[J]. Sensors,2024,24(24). DOI: 10.3390/s24247935.
[4] 左洋,李伟宏. UWB精准定位技术在电机车无人驾驶系统中的应用[J]. 工矿自动化,2023,49(增刊1):47-49. ZUO Yang,LI Weihong. Application of UWB precision positioning technology in motor truck unmanned system[J]. Journal of Mine Automation,2023,49(S1):47-49.
[5] CUI Yuming,LIU Songyong,YAO Jian,et al. Integrated positioning system of unmanned automatic vehicle in coal mines[J]. IEEE Transactions on Instrumentation and Measurement,2021,70:1-13.
[6] YUAN Xiaoming,BI Yueqi,HAO Mingrui,et al. Research on location estimation for coal tunnel vehicle based on ultra-wide band equipment[J]. Energies,2022,15(22). DOI: 10.3390/en15228524 .
[7] 林燕霞,苏丹. 基于SLAM技术的矿区巷道巡检机器人路径规划优化[J]. 金属矿山,2024(4):209-214. LIN Yanxia,SU Dan. Path planning optimization of mine roadway inspection robot based on SLAM technique[J]. Metal Mine,2024(4):209-214.
[8] 李芳威,鲍久圣,王陈,等. 基于LD改进Cartographer建图算法的无人驾驶无轨胶轮车井下SLAM自主导航方法及试验[J]. 煤炭学报,2024,49(增刊2):1271-1284. LI Fangwei,BAO Jiusheng,WANG Chen,et al. Underground SLAM autonomous navigation method and experiment of unmanned trackless haulage vehicles based on LD-improved Cartographer mapping algorithm[J]. Journal of China Coal Society,2024,49(S2):1271-1284.
[9] INOSTROZA F,PARRA-TSUNEKAWA I,RUIZ-DEL-SOLAR J. Robust localization for underground mining vehicles:an application in a room and pillar mine[J]. Sensors,2023,23(19). DOI: 10.3390/s23198059.
[10] 崔邵云,鲍久圣,胡德平,等. SLAM技术及其在矿山无人驾驶领域的研究现状与发展趋势[J]. 工矿自动化,2024,50(10):38-52. CUI Shaoyun,BAO Jiusheng,HU Deping,et al. Research status and development trends of SLAM technology in autonomous mining field[J]. Journal of Mine Automation,2024,50(10):38-52.
[11] 郭爱军,张奕,朱云涛. 基于LQR控制和姿态预测的井下无人矿车路径跟踪研究[J]. 煤炭工程,2023,55(增刊1):176-181. GUO Aijun,ZHANG Yi,ZHU Yuntao. Path tracking research of underground unmanned mine vehicles based on LQR control and posture prediction[J]. Coal Engineering,2023,55(S1):176-181.
[12] 王陈,鲍久圣,袁晓明,等. 无轨胶轮车井下无人驾驶系统设计及控制策略研究[J]. 煤炭学报,2021,46(增刊1):520-528. WANG Chen,BAO Jiusheng,YUAN Xiaoming,et al. Design and control strategy of underground driverless system for trackless rubber tire vehicle[J]. Journal of China Coal Society,2021,46(S1):520-528.
[13] LIU Ya,PENG Ping′an,WANG Liguan,et al. PSO-NMPC control strategy based path tracking control of mining LHD (scraper)[J]. Scientific Reports,2024,14(1). DOI: 10.1038/s41598-024-79248-8.
[14] 宋秦中,胡华亮. 基于CNN算法的井下无人驾驶无轨胶轮车避障方法[J]. 金属矿山,2023(10):168-174. SONG Qinzhong,HU Hualiang. Obstacle avoidance method for underground unmanned trackless rubber-tyred vehicle based on CNN algorithm[J]. Metal Mine,2023(10):168-174.
[15] MENG Qinghua,QIAN Chunjiang,SUN Zongyao,et al. Autonomous parking method based on improved A* algorithm and model predictive control[J]. Nonlinear Dynamics,2025,113(7):6839-6862. DOI: 10.1007/s11071-024-10456-7
[16] 韩江洪,卫星,陆阳,等. 煤矿井下机车无人驾驶系统关键技术[J]. 煤炭学报,2020,45(6):2104-2115. HAN Jianghong,WEI Xing,LU Yang,et al. Driverless technology of underground locomotive in coal mine[J]. Journal of China Coal Society,2020,45(6):2104-2115.
[17] 王凯,鲍久圣,吕玉寒,等. 基于ESKF与改进IMM算法的煤矿无人驾驶车辆井上−井下无缝定位[J/OL]. 煤炭学报:1-16 [2025-01-18]. https://doi.org/10.13225/j.cnki. jccs.2024.0676. WANG Kai,BAO Jiusheng,LYU Yuhan,et al. Seamless positioning of unmanned vehicles in coal mines above and below ground based on ESKF and improved IMM algorithm[J/OL]. Journal of China Coal Society:1-16 [2025-01-18]. https://doi.org/10.13225/j.cnki. jccs.2024.0676.
[18] CUI Yuming,PU Jiajun,HU Ningning,et al. Autonomous positioning for mobile vehicles based on visual-inertial fusion in challenging dark roadway scenes[J]. Journal of Field Robotics,2024. DOI: 10.1002/rob.22454.
[19] PAN Jian,XU Qing,LI Keqiang,et al. Cloud control of connected vehicle under bidirectional time-varying delay:an application of predictor-observer structured controller[J]. IEEE Transactions on Industrial Electronics,2024,71(10):13113-13123. DOI: 10.1109/TIE.2024.3355494
[20] LI Fanbiao,WU Zheng,PAL N R,et al. Lane-keeping control of automatic steering systems via adaptive fuzzy sliding-mode approach[J]. IEEE Transactions on Systems,Man,and Cybernetics:Systems,2024,54(3):1683-1693.
[21] GONZÁLEZ A,GARCÍA P. Output-feedback anti-disturbance predictor- based control for discrete-time systems with time-varying input delays[J]. Automatica,2021,129. DOI:10.1016/j.automatica.2021. 109627.
[22] WANG Kan,MING Yang,ZHAO Huanjuan,et al. Effect of shock-flame interactions on initial damage characteristics in highway tunnel under hazmat tanker truck accident[J]. Tunnelling and Underground Space Technology,2022,130. DOI: 10.1016/j.tust.2022.104763.
[23] CERNA G E P,HERNÁNDEZ J R C,HERAZO J C M,et al. Evaluation of the overall effectiveness (OEE) of autonomous transportation system (AHS) equipment and its impact on mine design. Open pit mine case study[J]. Procedia Computer Science,2023,224:468-473. DOI: 10.1016/j.procs.2023.09.066
-
期刊类型引用(8)
1. 宋东亚,武林俊. 电子对抗跨波段虚假信号自适应消除方法. 计算机仿真. 2024(10): 7-10+94 . 百度学术
2. 董玉圻. 基于神经网络的铁路通信网络传输延迟控制方法. 铁路通信信号工程技术. 2023(01): 33-39 . 百度学术
3. 高婷,卞金洪. 基于时频分析的多通道双向信号传输延迟消除技术. 现代工业经济和信息化. 2023(04): 63-65 . 百度学术
4. 卢非凡,吴悠. 基于长短记忆神经网络的海量异常信号实时监控预警与处置全流程管控方法研究. 自动化与仪器仪表. 2023(08): 61-64+70 . 百度学术
5. 李宁,滕荔楠,彭传. 机电工程领域电力监控系统的分析和运行优化措施. 机电工程技术. 2023(10): 220-223 . 百度学术
6. 侯瑞丽. 基于EMMD-RVM的煤矿采矿机械设备异常检测系统. 能源与环保. 2022(05): 149-155 . 百度学术
7. 陈丽琴,顾静军. 基于无线传感器网络的地铁通信传输延迟优化方法. 传感技术学报. 2022(05): 698-702 . 百度学术
8. 刘海梅,唐利,李军. 嵌入式光网络延迟信号监测系统的构建. 激光杂志. 2022(10): 131-135 . 百度学术
其他类型引用(1)