液压支架跟机移架控制异常工况模式识别方法

马志涛, 付翔, 李浩杰, 牛鹏昊, 贾一帆

马志涛,付翔,李浩杰,等. 液压支架跟机移架控制异常工况模式识别方法[J]. 工矿自动化,2025,51(4):36-43. DOI: 10.13272/j.issn.1671-251x.2025030036
引用本文: 马志涛,付翔,李浩杰,等. 液压支架跟机移架控制异常工况模式识别方法[J]. 工矿自动化,2025,51(4):36-43. DOI: 10.13272/j.issn.1671-251x.2025030036
MA Zhitao, FU Xiang, LI Haojie, et al. Method for recognizing abnormal operation patterns in hydraulic support machine-following and shifting control[J]. Journal of Mine Automation,2025,51(4):36-43. DOI: 10.13272/j.issn.1671-251x.2025030036
Citation: MA Zhitao, FU Xiang, LI Haojie, et al. Method for recognizing abnormal operation patterns in hydraulic support machine-following and shifting control[J]. Journal of Mine Automation,2025,51(4):36-43. DOI: 10.13272/j.issn.1671-251x.2025030036

液压支架跟机移架控制异常工况模式识别方法

基金项目: 

国家自然科学基金项目(52274157);山西省基础研究计划联合资助项目(202403011241002);“科技兴蒙”行动重点专项项目(2022EEDSKJXM010)。

详细信息
    作者简介:

    马志涛(2001—),男,山西大同人,硕士研究生,研究方向为智能采矿数智赋能技术,E-mail:2236053015@qq.com

    通讯作者:

    付翔(1986—),男,山西长治人,副教授,博士(后),博士研究生导师,研究方向为智能采矿数智赋能技术,E-mail:14632235@qq.com

  • 中图分类号: TD355

Method for recognizing abnormal operation patterns in hydraulic support machine-following and shifting control

  • 摘要:

    智采工作面在液压支架自动跟机时,由于底板、液压系统及电液控制系统等多方面因素的影响,会出现丢架、直线度不平整等异常工况。当前针对各类异常工况的识别分析主要集中于自动跟机结束后,仅通过人工调整进行单一判断,不利于快速判断需人工调控的液压支架架号。针对上述问题,提出了一种液压支架跟机移架控制异常工况模式识别方法,将异常工况识别范围提前至支架降柱后的移架阶段,得出停机波动型、移架超时型和行程异常型3类异常工况模式。首先,采集液压支架油缸行程与立柱压力数据。其次,对数据进行预处理,包括异常值处理、相邻数据求差及依据差值正负合并数据。然后,采用基于行程−压力−时间分析的移架异常识别算法对停机波动型与移架超时型模式进行识别;采用决策树模型对行程异常型模式进行识别。最后,提取移架动作起始及结束时间、当前支架行程的最大与最小值、当前支架与两侧支架的行程差6项特征,将其中移架动作起始与结束时间输入移架异常识别算法,进行行程波动识别,对具有行程波动的数据分别进行压力波动及移架动作时间的判别,识别出停机波动型与移架超时型模式;将后续4项行程类特征输入决策树模型,进行行程异常类模式的识别。实际测试结果表明:该识别方法对停机波动型模式与移架超时型模式的识别精确率为100%,召回率达95%以上;对于行程异常突降型模式的识别精确率为100%,召回率为97.87%;行程异常均小型模式的识别精确率为95.29%,召回率为81%,能够较好地对液压支架跟机移架控制的异常工况进行识别。

    Abstract:

    In intelligent mining faces, abnormal operating conditions such as support loss and poor linearity may occur during automatic follow-up of hydraulic supports, due to various factors including the floor conditions, hydraulic system, and electro-hydraulic control system. Currently, the identification and analysis of these abnormal conditions mainly occur after the automatic follow-up process, relying solely on manual adjustments for judgment. This approach is inefficient for quickly determining which hydraulic support units require manual intervention. To address this issue, a method was proposed for identifying abnormal condition patterns in machine-following and shifting control of hydraulic supports. This method shifted the scope of anomaly detection to the shifting stage after the support has lowered its columns, and classifies abnormal patterns into three types: shutdown fluctuation type, over-time shifting type, and stroke anomaly type. Data on hydraulic support cylinder stroke and leg pressure were collected. Then, data preprocessing was performed, including outlier removal, calculation of differences between adjacent data points, and merging data based on the sign of the differences. An anomaly recognition algorithm based on stroke-pressure-time analysis was used to identify the shutdown fluctuation and over-time shifting types. A decision tree model was employed to detect stroke anomaly patterns. Six key features were extracted: start and end time of the shifting action, maximum and minimum values of the current support's stroke, and the stroke differences between the current support and its neighboring supports. The start and end times were fed into the stroke anomaly recognition algorithm to detect fluctuation patterns. For data with stroke fluctuations, further analysis of pressure variation and shifting action duration was conducted to identify shutdown fluctuation and over-time shifting types. The remaining four stroke-related features were input into the decision tree model to identify stroke anomaly patterns. Experimental results show that the proposed method achieved a precision of 100% and recall rate of over 95% for identifying shutdown fluctuation and over-time shifting types. For the sudden drop type stroke anomaly, the method achieved a precision of 100% and a recall rate of 97.87%. For the uniform small stroke anomaly, the precision was 95.29% and the recall rate was 81%. These results demonstrate that the method effectively identifies abnormal conditions in hydraulic support machine-following and shifting control.

  • 图  1   正常工况下的油缸行程及立柱压力

    Figure  1.   Cylinder stroke and column pressure under normal working conditions

    图  2   液压支架跟机移架过程中的3种异常工况

    Figure  2.   Three abnormal working conditions during the hydraulic support machine-following and shifting

    图  3   行程异常型2类子模式

    Figure  3.   Two sub-patterns of abnormal stroke type

    图  4   液压支架跟机移架异常工况模式识别流程

    Figure  4.   Process of abnormal operating condition pattern recognition for hydraulic support machine-following and shifting

    图  5   决策树模型的混淆矩阵

    Figure  5.   Confusion matrix of decision tree model

    表  1   异常工况模式分类

    Table  1   Classification of abnormal operating condition patterns

    名称 数据表现 原因分析
    停机波动型 液压支架正常跟机移架过程中
    出现立柱行程波动与立柱升降
    丢架;液压系统短时压力故障;电液控制系统动作控制不合理等
    移架超时型 液压支架跟机移架过程中出现较长时间停机现象 丢架;液压系统故障;电液控制系统故障等
    行程异常型 液压支架油缸行程过小 丢架;底板不平;工作面调直导致支架运动受限等
    下载: 导出CSV

    表  2   行程异常型子模式分类

    Table  2   Sub-pattern classification of abuormal stroke type

    名称 数据表现 原因分析
    行程异常突降型 中间支架与其相邻支架间
    油缸行程值存在明显差距
    丢架;底板不平等
    行程异常均小型 中间支架与其相邻支架间
    油缸行程值无明显差距
    工作面调直导致支架运
    动受限;底板不平等
    下载: 导出CSV

    表  3   模式识别实例化测试

    Table  3   Pattern recognition implementation test

    数量比例%
    样本总量10 218100
    停机波动型940.86
    移架超时型880.92
    下载: 导出CSV

    表  4   各模型交叉验证及测试集准确率

    Table  4   Cross-validation and test set accuracy of each model %

    模型交叉验证平均准确率测试集准确率
    决策树94.894.2
    K最近邻93.392.5
    支持向量机92.291.6
    下载: 导出CSV

    表  5   模型验证结果

    Table  5   Model validation results %

    模式类型精确率召回率
    正常96.3299.60
    突降型10097.87
    均小型95.2981.00
    下载: 导出CSV
  • [1] 牛剑峰. 综采液压支架跟机自动化智能化控制系统研究[J]. 煤炭科学技术,2015,43(12):85-91.

    NIU Jianfeng. Study on automatic and intelligent following control system of hydraulic powered support in fully-mechanized coal mining face[J]. Coal Science and Technology,2015,43(12):85-91.

    [2] 任怀伟,王国法,赵国瑞,等. 智慧煤矿信息逻辑模型及开采系统决策控制方法[J]. 煤炭学报,2019,44(9):2923-2935.

    REN Huaiwei,WANG Guofa,ZHAO Guorui,et al. Smart coal mine logic model and decision control method of mining system[J]. Journal of China Coal Society,2019,44(9):2923-2935.

    [3] 张帅,任怀伟,韩安,等. 复杂条件工作面智能化开采关键技术及发展趋势[J]. 工矿自动化,2022,48(3):16-25.

    ZHANG Shuai,REN Huaiwei,HAN An,et al. Key technology and development trend of intelligent mining in complex condition working face[J]. Journal of Mine Automation,2022,48(3):16-25.

    [4] 路正雄,郭卫,张帆,等. 基于数据驱动的综采装备协同控制系统架构及关键技术[J]. 煤炭科学技术,2020,48(7):195-205.

    LU Zhengxiong,GUO Wei,ZHANG Fan,et al. Collaborative control system architecture and key technologies of fully-mechanized mining equipment based on data drive[J]. Coal Science and Technology,2020,48(7):195-205.

    [5]

    ZHANG Lin,WANG Zhongbin,TAN Chao,et al. A fruit fly-optimized Kalman filter algorithm for pushing distance estimation of a hydraulic powered roof support through tuning covariance[J]. Applied Sciences,2016,6(10). DOI: 10.3390/app6100299.

    [6]

    FAN Qigao,LI Wei,WANG Yuqiao,et al. Control strategy for an intelligent shearer height adjusting system[J]. Mining Science and Technology (China),2010,20(6):908-912. DOI: 10.1016/S1674-5264(09)60305-7

    [7] 王统诚. 液压支架自动化跟机系统研究[D]. 青岛:山东科技大学,2018.

    WANG Tongcheng. Research on automatic follow-up system of hydraulic support[D]. Qingdao:Shandong University of Science and Technology,2018.

    [8] 付翔,李浩杰,张锦涛,等. 综采液压支架中部跟机多模态人机协同控制系统[J]. 煤炭学报,2024,49(3):1717-1730.

    FU Xiang,LI Haojie,ZHANG Jintao,et al. Multimodal human-machine collaborative control system for hydraulic supports following the shearer in the middle range of fully mechanized mining face[J]. Journal of China Coal Society,2024,49(3):1717-1730.

    [9] 杨杰. 智能化综采工作面液压支架快速跟机策略的研究与应用[J]. 自动化应用,2025,66(3):89-91.

    YANG Jie. Research and application of quickly follow machine strategy for hydraulic support in intelligent comprehensive mining face[J]. Automation Application,2025,66(3):89-91.

    [10] 杨永锴,张敏龙,许春雨,等. 液压支架电液控制系统总线通信故障检测与诊断方法[J]. 工矿自动化,2023,49(12):70-76.

    YANG Yongkai,ZHANG Minlong,XU Chunyu,et al. Fault detection and diagnosis method for bus communication in hydraulic support electro-hydraulic control system[J]. Journal of Mine Automation,2023,49(12):70-76.

    [11] 王培恩,霍鹏飞,田慕琴,等. 液压支架电液控制系统通信调度策略研究[J]. 煤炭工程,2023,55(2):146-151.

    WANG Pei'en,HUO Pengfei,TIAN Muqin,et al. Communication scheduling strategy of control system for hydraulic support electro-hydraulic based on EDF[J]. Coal Engineering,2023,55(2):146-151.

    [12] 王书明,牛剑峰. 液压支架电液控制系统故障诊断技术研究[J]. 煤炭科学技术,2018,46(2):225-231.

    WANG Shuming,NIU Jianfeng. Study on fault diagnosis technology of electro-hydraulic control system applied in hydraulic powered support[J]. Coal Science and Technology,2018,46(2):225-231.

    [13] 王云飞,赵继云,张鹤,等. 基于神经网络补偿的液压支架群推移系统直线度控制方法[J]. 煤炭科学技术,2024,52(11):174-185. DOI: 10.12438/cst.2024-0951

    WANG Yunfei,ZHAO Jiyun,ZHANG He,et al. Straightness control method of hydraulic support group pushing system based on neural network compensation[J]. Coal Science and Technology,2024,52(11):174-185. DOI: 10.12438/cst.2024-0951

    [14] 何勇华. 综采工作面液压支架直线度控制技术研究[J]. 煤矿机械,2025,46(3):37-41.

    HE Yonghua. Research on straightness control technology of hydraulic support in fully mechanized mining face[J]. Coal Mine Machinery,2025,46(3):37-41.

    [15] 梁敬梅,李翠花. 基于神经网络逼近器的液压支架多缸协同控制[J]. 煤炭技术,2023,42(5):223-225.

    LIANG Jingmei,LI Cuihua. Multi cylinder coordinated control of hydraulic support based on neural network approximator[J]. Coal Technology,2023,42(5):223-225.

    [16] 李森. 基于惯性导航的工作面直线度测控与定位技术[J]. 煤炭科学技术,2019,47(8):169-174.

    LI Sen. Measurement & control and localisation for fully-mechanized working face alignment based on inertial navigation[J]. Coal Science and Technology,2019,47(8):169-174.

    [17] 张辉,王世博,孔维,等. 液压支架推溜移架过程力学模型研究[J]. 煤矿机械,2019,40(8):65-67.

    ZHANG Hui,WANG Shibo,KONG Wei,et al. Research on mechanical model of hydraulic support during push-pull process[J]. Coal Mine Machinery,2019,40(8):65-67.

    [18] 王国法. 煤矿智能化最新技术进展与问题探讨[J]. 煤炭科学技术,2022,50(1):1-27. DOI: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201001

    WANG Guofa. New technological progress of coal mine intelligence and its problems[J]. Coal Science and Technology,2022,50(1):1-27. DOI: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201001

    [19] 李首滨. 智能化开采研究进展与发展趋势[J]. 煤炭科学技术,2019,47(10):102-110.

    LI Shoubin. Progress and development trend of intelligent mining technology[J]. Coal Science and Technology,2019,47(10):102-110.

    [20] 王国法,赵国瑞,任怀伟. 智慧煤矿与智能化开采关键核心技术分析[J]. 煤炭学报,2019,44(1):34-41.

    WANG Guofa,ZHAO Guorui,REN Huaiwei. Analysis on key technologies of intelligent coal mine and intelligent mining[J]. Journal of China Coal Society,2019,44(1):34-41.

    [21] 张锦涛,付翔,王然风,等. 智采工作面中部液压支架集群自动化后人工调控决策模型[J]. 工矿自动化,2022,48(10):20-25.

    ZHANG Jintao,FU Xiang,WANG Ranfeng,et al. Manual regulation and control decision model of middle hydraulic support cluster automation in the intelligent working face[J]. Journal of Mine Automation,2022,48(10):20-25.

  • 期刊类型引用(0)

    其他类型引用(2)

图(5)  /  表(5)
计量
  • 文章访问数:  56
  • HTML全文浏览量:  17
  • PDF下载量:  13
  • 被引次数: 2
出版历程
  • 收稿日期:  2025-03-07
  • 修回日期:  2025-04-09
  • 网络出版日期:  2025-05-06
  • 刊出日期:  2025-04-14

目录

    /

    返回文章
    返回