基于WOA−GRU模型的煤泥浮选智能控制研究

窦治衡, 王然风, 秦新凯, 柴宇青, 李品钰, 刘舒通

窦治衡,王然风,秦新凯,等. 基于WOA−GRU模型的煤泥浮选智能控制研究[J]. 工矿自动化,2025,51(4):153-159, 168. DOI: 10.13272/j.issn.1671-251x.2025030014
引用本文: 窦治衡,王然风,秦新凯,等. 基于WOA−GRU模型的煤泥浮选智能控制研究[J]. 工矿自动化,2025,51(4):153-159, 168. DOI: 10.13272/j.issn.1671-251x.2025030014
DOU Zhiheng, WANG Ranfeng, QIN Xinkai, et al. Research on intelligent control of coal slime flotation based on the WOA-GRU model[J]. Journal of Mine Automation,2025,51(4):153-159, 168. DOI: 10.13272/j.issn.1671-251x.2025030014
Citation: DOU Zhiheng, WANG Ranfeng, QIN Xinkai, et al. Research on intelligent control of coal slime flotation based on the WOA-GRU model[J]. Journal of Mine Automation,2025,51(4):153-159, 168. DOI: 10.13272/j.issn.1671-251x.2025030014

基于WOA−GRU模型的煤泥浮选智能控制研究

基金项目: 

国家自然科学基金项目(52274157); “科技兴蒙”行动重点专项项目(2022EEDSKJXM010)。

详细信息
    作者简介:

    窦治衡(1997—),男,山西长治人,硕士研究生,主要研究方向为煤泥浮选智能化等,E-mail:1175334163@qq.com

    通讯作者:

    王然风(1970—),男,山西长子人,副教授,博士,主要研究方向为煤矿智能化开采与分选,E-mail:wrf197010@126.com

  • 中图分类号: TD948

Research on intelligent control of coal slime flotation based on the WOA-GRU model

  • 摘要:

    由于浮选过程机理复杂,难以满足先进过程控制的需求,基于系统辨识方法进行建模,并针对传统辨识方法拟合度较低的问题,提出了一种基于鲸鱼优化算法(WOA)与门控循环单元(GRU)(WOA−GRU)的系统辨识模型。该模型利用GRU有效应对浮选过程中存在的时滞特性,通过WOA对GRU网络参数进行优化,进一步提高了模型的辨识精度。考虑到现有选煤厂普遍使用单输入单输出的PID控制器,难以应对多输入多输出系统,将模型预测控制(MPC)引入实际生产现场,以更好地解决浮选过程中多变量耦合问题。基于代池坝选煤厂的生产数据,分别对WOA−GRU和NARX 2种辨识模型进行了MPC仿真,结果表明,WOA−GRU模型的拟合精度较NARX模型高51.84%,引入MPC后,WOA−GRU模型可将灰分波动控制在设定值的±4%内,优于NARX模型。现场试运行结果表明,灰分波动幅度位于5%~10%的数据较引入MPC前占比减少了10.8%,大于10%的数据占比则减少了3.9%,说明WAO−GRU模型不仅具备更高的精度与稳定性,而且能够减小灰分的波动,为煤泥浮选过程的智能化控制与应用提供了参考。

    Abstract:

    Due to the complexity of the flotation process mechanism, which makes it difficult to meet the requirements of advanced process control, a system identification modeling method was adopted. To address the low fitting accuracy of traditional identification methods, a Whale Optimization Algorithm (WOA)-based Gated Recurrent Unit (GRU) system identification model (WOA-GRU) was proposed. This model leveraged the GRU's capability to effectively handle the time-delay characteristics inherent in the flotation process, while the WOA was used to optimize network parameters, further improving the identification accuracy. Considering that most existing coal preparation plants use single-input single-output PID controllers, which struggle to manage multi-input multi-output systems, Model Predictive Control (MPC) was introduced to better handle the multivariable coupling in the flotation process. Using production data from the Daichi Dam coal preparation plant, MPC simulations were conducted using both the WOA-GRU and NARX identification models. The results showed that the WOA-GRU model achieved 51.84% higher fitting accuracy than the NARX model. After integrating MPC, the WOA-GRU model could maintain ash content fluctuations within ±4% of the setpoint, outperforming the NARX model. Field trial results indicated that the proportion of data with ash fluctuation between 5% and 10% decreased by 10.8%, and the proportion exceeding 10% decreased by 3.9% compared to before MPC implementation. These results demonstrate that the WOA-GRU model not only offers higher accuracy and stability but also reduces ash content fluctuations, providing a reference for intelligent control and practical application in coal slime flotation.

  • 图  1   GRU网络结构

    Figure  1.   GRU network structure

    图  2   WOA−GRU算法流程

    Figure  2.   Algrothm floechart of WOA-GRU

    图  3   干煤泥量与灰分波动

    Figure  3.   Fluctuation of dry coal slime quantity and ash content

    图  4   数据预处理流程

    Figure  4.   Data preprocessing process

    图  5   过程变量与时间滞后相关系数

    Figure  5.   Correlation coefficient between process variables and time lag

    图  6   NARX模型拟合曲线

    Figure  6.   NARX model fitting curve

    图  7   WOA−GRU模型拟合曲线

    Figure  7.   WOA-GRU model fitting curves

    图  8   MPC系统原理

    Figure  8.   Principle of MPC control system

    图  9   仿真模型结构

    Figure  9.   Simulation model structure

    图  10   WOA−GRU模型仿真结果

    Figure  10.   WOA-GRU model simulation results

    图  11   NARX模型仿真结果

    Figure  11.   NARX model simulation results

    图  12   煤泥浮选控制界面

    Figure  12.   Coal slime flotation control interface

    图  13   现场运行结果

    Figure  13.   On-site operation results

    表  1   控制前的波动统计

    Table  1   Fluctuation statistics before control

    变量(基准值) 不同波动范围下的数据占比/%
    5%~10% 大于10%
    干煤泥量(72 000 kg/m3 36.3 13.9
    灰分(73%) 46.7 24.3
    下载: 导出CSV

    表  2   控制后的波动统计

    Table  2   Fluctuation statistics after control

    变量(基准值) 不同波动范围下的数据占比/%
    5%~10% 大于10%
    干煤泥量(72 000 kg/m3 35.7 13.2
    灰分(73%) 35.9 20.4
    下载: 导出CSV
  • [1] 国家能源局. 煤矿智能化标准体系建设指南[EB/OL]. (2024-04-03)[2025-03-01]. https://www.xifeng.gov.cn/zwgk/zdlygk/xcyxdn/202404/t20240403_84145937.html.

    National Energy Administration. Guide for building the intelligent standard system of coal mine[EB/OL]. (2024-04-03)[2025-03-01]. https://www.xifeng.gov.cn/zwgk/zdlygk/xcyxdn/202404/t20240403_84145937.html.

    [2] 王然风,高建川,付翔. 智能化选煤厂架构及关键技术[J]. 工矿自动化,2019,45(7):28-32.

    WANG Ranfeng,GAO Jianchuan,FU Xiang. Framework and key technologies of intelligent coal preparation plant[J]. Industry and Mine Automation,2019,45(7):28-32.

    [3] 陶有俊,路迈西,蔡璋,等. 煤泥浮选动力学模型的研究[J]. 选煤技术,1994(3):22-26.

    TAO Youjun,LU Maixi,CAI Zhang,et al. Research on the dynamic model of coal slime flotation[J]. Coal Preparation Technology,1994(3):22-26.

    [4]

    QUINTANILLA P,NEETHLING S J,BRITO-PARADA P R. Modelling for froth flotation control:a review[J]. Minerals Engineering,2021,162. DOI: 10.1016/j.mineng.2020.106718.

    [5] 褚菲,王佩,朱安强,等. 面向过程控制的煤泥浮选机理建模与仿真研究[J]. 控制工程,2024,31(12):2129-2139,2166.

    CHU Fei,WANG Pei,ZHU Anqiang,et al. Modeling and simulation of coal slurry flotation mechanism for process control[J]. Control Engineering of China,2024,31(12):2129-2139,2166.

    [6] 刘兆田,李敬敬,何旭,等. Matlab系统辨识工具箱在煤泥浮选过程辨识建模中的应用[J]. 选煤技术,2014(6):77-80.

    LIU Zhaotian,LI Jingjing,HE Xu,et al. Application of Matlab system identification toolbox to identification and modeling of the coal flotation process[J]. Coal Preparation Technology,2014(6):77-80.

    [7] 范富博. 浮选加药系统智能控制研究与应用[D]. 太原:太原理工大学,2022.

    FAN Fubo. Research and application of intelligent control of flotation dosing system[D]. Taiyuan:Taiyuan University of Technology,2022.

    [8] 姜岩,王雪刚,侯先瑞,等. 深度循环神经网络在船舶操纵运动辨识中的对比研究[J]. 水动力学研究与进展A辑,2023,38(2):187-194.

    JIANG Yan,WANG Xuegang,HOU Xianrui,et al. Comparative study of deep recurrent neural network in ship maneuvering motion recognition[J]. Chinese Journal of Hydrodynamics,2023,38(2):187-194.

    [9] 许中华. 基于改进鲸鱼优化算法的非线性系统辨识研究[D]. 北京:北京化工大学,2021.

    XU Zhonghua. Research on nonlinear system identification based on improved whale optimization algorithm[D]. Beijing:Beijing University of Chemical Technology,2021.

    [10] 李强,范凌霄,刘利敏,等. 基于多数据融合控制器的浮选过程控制应用研究[J]. 中国矿业,2023,32(增刊1):177-181. DOI: 10.12075/j.issn.1004-4051.20230421

    LI Qiang,FAN Lingxiao,LIU Limin,et al. Research on the application of floatation process control based on multiple data fusion controllers[J]. China Mining Journal,2023,32(S1):177-181. DOI: 10.12075/j.issn.1004-4051.20230421

    [11]

    HOCHREITER S,SCHMIDHUBER J. Long short-term memory[J]. Neural Computation,1997,9(8):1735-1780. DOI: 10.1162/neco.1997.9.8.1735

    [12]

    CHO K,VAN MERRIENBOER B,GULCEHRE C,et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J]. Computer Science,2014. DOI: 10.3115/v1/D14-1179.

    [13] 赵家城,孙坚,徐红伟. 基于改进鲸鱼算法的锂电池模型参数辨识[J/OL]. 电源学报:1-14[2025-03-01]. http://kns.cnki.net/kcms/detail/12.1420.TM.20230517.1045.004.html.

    ZHAO Jiacheng,SUN Jian,XU Hongwei. Parameter identification of lithium battery model based on improved whale algorithm[J/OL]. Journal of Power Supply:1-14[2025-03-01]. http://kns.cnki.net/kcms/detail/12.1420.TM.20230517.1045.004.html.

    [14]

    MIRJALILI S,LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software,2016,95:51-67. DOI: 10.1016/j.advengsoft.2016.01.008

    [15]

    MOHAMMED H M,UMAR S U,RASHID T A. A systematic and meta-analysis survey of whale optimization algorithm[J]. Computational Intelligence and Neuroscience,2019. DOI: 10.1155/2019/8718571.

    [16] 张翼飞,皮子扬,朱瑞琪,等. 基于WOA−BiLSTM神经网络的风力发电预测[J]. 电工技术,2022(10):28-31.

    ZHANG Yifei,PI Ziyang,ZHU Ruiqi,et al. Wind power prediction based on WOA-BiLSTM neural network[J]. Electric Engineering,2022(10):28-31.

    [17] 李祚敏,秦江涛. 基于WOA−GRU的销售预测研究[J]. 软件导刊,2020,19(9):17-20.

    LI Zuomin,QIN Jiangtao. Research on sales forecasting based on WOA-GRU[J]. Software Guide,2020,19(9):17-20.

    [18] 寇敏,张萌萌,赵军学,等. 融合天气特征的WOA−GRU高速公路短时交通流预测[J]. 公路,2024,69(4):193-199.

    KOU Min,ZHANG Mengmeng,ZHAO Junxue,et al. Prediction of short-term traffic flow of WOA-GRU expressway based on weather characteristics[J]. Highway,2024,69(4):193-199.

    [19] 王珺,王然风,魏凯,等. 基于时间序列对齐和TCNformer的重介精煤灰分多步预测[J]. 工矿自动化,2024,50(5):60-66.

    WANG Jun,WANG Ranfeng,WEI Kai,et al. Multi-step prediction of heavy medium refined coal ash based on time series alignment and TCNformer[J]. Journal of Mine Automation,2024,50(5):60-66.

    [20] 宋春生,熊学春,陈泊远,等. 一种基于NARX神经网络的振动主动控制方法[J]. 噪声与振动控制,2024,44(2):1-7,260.

    SONG Chunsheng,XIONG Xuechun,CHEN Boyuan,et al. An active vibration control method based on NARX neural network[J]. Noise and Vibration Control,2024,44(2):1-7,260.

    [21] 余嘉莉,陈永忠,韩利峰. 基于Qt的TMSR熔盐泵试验台架控制系统[J]. 核技术,2022,45(6):87-94.

    YU Jiali,CHEN Yongzhong,HAN Lifeng. The control system for TMSR molten salt pump experimental platform based on Qt[J]. Nuclear Techniques,2022,45(6):87-94.

    [22] 陈云霞,黄雷阳. 基于PCI1710和Qt的电子束焊机数据采集系统[J]. 仪表技术与传感器,2025(1):73-78. DOI: 10.3969/j.issn.1002-1841.2025.01.013

    CHEN Yunxia,HUANG Leiyang. Data acquisition system of electron beam welder based on PCI1710 and Qt[J]. Instrument Technique and Sensor,2025(1):73-78. DOI: 10.3969/j.issn.1002-1841.2025.01.013

    [23] 贾世海, 李沛玉, 胡守扬, 等. 基于Qt框架的APV25数据采集系统研究[J]. 原子能科学技术,2020,54(6):1041-1046.

    JIA Shihai, LI Peiyu, HU Shouyang, et al. Research of APV25 Data acquisition system based on Qt framework[J]. Atomic Energy Science and Technology,2020,54(6):1041-1046.

    [24] 任安虎, 李珊. 集成Vissim-Python和Qt的信控交叉口DRL配时仿真系统设计[J]. 计算机应用与软件,2024,41(11):53-59,122.

    REN Anhu, LI Shan. Design of DRL timing limulation system for signal intersection integrating Vissim-Python and Qt[J]. Computer Applications and Software,2024,41(11):53-59,122.

图(13)  /  表(2)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-03
  • 修回日期:  2025-04-08
  • 网络出版日期:  2025-04-08
  • 刊出日期:  2025-04-14

目录

    /

    返回文章
    返回