矿井Mesh无线多跳路径流内竞争分析及约束方法

李昀

李昀. 矿井Mesh无线多跳路径流内竞争分析及约束方法[J]. 工矿自动化,2025,51(4):74-85. DOI: 10.13272/j.issn.1671-251x.2025020072
引用本文: 李昀. 矿井Mesh无线多跳路径流内竞争分析及约束方法[J]. 工矿自动化,2025,51(4):74-85. DOI: 10.13272/j.issn.1671-251x.2025020072
LI Yun. Analysis and constraint methods for intra-flow contention in multi-hop paths of wireless mesh networks in mines[J]. Journal of Mine Automation,2025,51(4):74-85. DOI: 10.13272/j.issn.1671-251x.2025020072
Citation: LI Yun. Analysis and constraint methods for intra-flow contention in multi-hop paths of wireless mesh networks in mines[J]. Journal of Mine Automation,2025,51(4):74-85. DOI: 10.13272/j.issn.1671-251x.2025020072

矿井Mesh无线多跳路径流内竞争分析及约束方法

基金项目: 

国家重点研发计划项目(2022YFB4703603);天地科技有限公司科技创新创业资金专项项目(2021TD-MS009)。

详细信息
    作者简介:

    李昀(1986—),男,重庆人,助理研究员,主要从事矿井无线自组网的研究工作,E-mail:55703833@qq.com

  • 中图分类号: TD655.3

Analysis and constraint methods for intra-flow contention in multi-hop paths of wireless mesh networks in mines

  • 摘要:

    针对现有无线Mesh网络的多跳带宽无法支撑实时音视频类大通量业务的问题,分析了矿井Mesh无线多跳路径流内竞争机制,揭示了多跳带宽损失机理。指出大于6跳的多跳中继系统存在最优收敛比,具备约束多跳带宽1/nn为链路数量下降趋势的可能性,小于等于6跳的多跳中继系统不能约束1/n下降趋势。决定多跳中继系统存在最优收敛比的关键因素是载波侦听距离与稳定通信距离之比ΔS:当路径节点按ΔS=2均匀分布时,多跳带宽存在最优收敛比1/6;由于矿井无线传输的分界特性,ΔS≈3,导致矿井内路径节点均匀分布时的多跳带宽最优收敛比为1/8;矿井无线覆盖的不对称、不稳定特性造成节点不能均匀分布,因此模拟矿井 10 跳路径的多跳带宽最优收敛比为1/5。基于约束竞争范围的思想,提出异频分段串联混合组建链状网络的方法,在不修改Mesh协议的条件下,利用频率分割路径使流内竞争范围约束在各条路径内。实验结果表明,当无线链路数量大于10跳时,链状网络的首末带宽大于传统Mesh多跳路径的多跳带宽,同时收敛比也大于1/n,验证了该方法约束多跳带宽1/n下降趋势的可行性。

    Abstract:

    To address the issue that the multi-hop bandwidth of existing wireless Mesh networks cannot support real-time, high-throughput services such as audio and video in mines, the intra-flow contention mechanism of multi-hop paths in mine wireless Mesh networks was analyzed, revealing the mechanism of multi-hop bandwidth degradation. It was pointed out that multi-hop relay systems with more than six hops have an optimal convergence ratio, which can potentially constrain the 1/n (n being the number of links) bandwidth degradation trend. However, systems with six or fewer hops cannot constrain this trend. The key factor determining the existence of an optimal convergence ratio is the ratio ΔS between the carrier sensing distance and the stable communication distance. When path nodes are uniformly distributed with ΔS=2, the optimal convergence ratio is 1/6. Due to the unique boundary characteristics of wireless transmission in mines, ΔS≈3, resulting in an optimal convergence ratio of 1/8 when nodes are uniformly distributed. However, the asymmetric and unstable nature of wireless coverage in mines prevents uniform node distribution. Therefore, for a 10-hop path in a simulated mine, the optimal convergence ratio is 1/5. Based on the idea of constraining the contention range, a method of constructing a chain network using frequency-division segmented serial hybrid links was proposed. Without modifying the Mesh protocol, this method constrained intra-flow contention within each path segment by splitting the path using different frequencies. Experimental results showed that when the number of wireless links exceeded ten hops, the bandwidth between the first and last nodes in the chain network was greater than the multi-hop bandwidth of traditional Mesh paths, and the convergence ratio also exceeded 1/n, validating the feasibility of the proposed method in constraining the 1/n bandwidth degradation trend.

  • 图  1   多跳路径共享信道冲突与流内竞争

    Figure  1.   Multi-hop path shared channel conflict and intra-flow competition

    图  2   “平均的方法”原理

    Figure  2.   Principle of "average method"

    图  3   10跳路径的链路竞争

    Figure  3.   Link competition of 10-hop path

    图  4   矿井无线传输损耗曲线

    Figure  4.   Wireless transmission loss curve in mines

    图  5   矿井10跳路径链路竞争

    Figure  5.   Link competition of 10-hop path in mines

    图  6   矿井不对称覆盖特征下10跳路径模拟

    Figure  6.   Simulation of 10-hop path under asymmetric coverage characteristics in mines

    图  7   矿井不稳定覆盖特征下10跳路径模拟

    Figure  7.   Simulation of 10-hop path under unstable coverage characteristics in mines

    图  8   楼道实验的路径拓扑结构

    Figure  8.   Path topology structure of corridor experiments

    图  9   巷道实验的路径拓扑结构

    Figure  9.   Path topology structure of roadway experiments

    表  1   10跳路径各链路竞争秩

    Table  1   Competition rank of each link in the 10-hop path

    链路 施加影响
    的链路
    可施加
    的冲突
    权重 链路 施加影响
    的链路
    可施加
    的冲突
    权重
    1 2 ①,② 1.1 3.7 6 4 1.0 5.7
    3 ①,② 1.1 5 1.0
    4 1.5 7 ①,② 1.1
    2 1 1.0 4.7 8 ①,② 1.1
    3 ①,② 1.1 9 1.5
    4 ①,② 1.1 7 5 1.0 5.7
    5 1.5 6 1.0
    3 1 1.0 5.7 8 ①,② 1.1
    2 1.0 9 ①,② 1.1
    4 ①,② 1.1 10 1.5
    5 ①,② 1.1 8 6 1.0 4.2
    6 1.5 7 1.0
    4 2 1.0 5.7 9 ①,② 1.1
    3 1.0 10 ①,② 1.1
    5 ①,② 1.1 9 7 1.0 3.1
    6 ①,② 1.1 8 1.0
    7 1.5 10 ①,② 1.1
    5 3 1.0 5.7 10 8 1.0 2.0
    4 1.0 9 1.0
    6 ①,② 1.1
    7 ①,② 1.1
    8 1.5
     注:①表示相邻链路相互干扰退避过程;②表示链路之间的同步碰撞;③表示隐藏节点导致的链路对链路的异步碰撞。
    下载: 导出CSV

    表  2   1~10跳路径各链路竞争秩和最优收敛比

    Table  2   Competition rank and optimal convergence ratio of each link in the 1-hop to 10-hop path

    链路
    3跳 4跳 5跳 6跳 7跳 8跳 9跳 10跳
    1 2.2 3.7 3.7 3.7 3.7 3.7 3.7 3.7
    2 2.1 3.2 4.7 4.7 4.7 4.7 4.7 4.7
    3 2.0 3.1 4.2 5.7 5.7 5.7 5.7 5.7
    4 2.0 3.1 4.2 5.7 5.7 5.7 5.7
    5 2.0 3.1 4.2 5.7 5.7 5.7
    6 2.0 3.1 4.2 5.7 5.7
    7 2.0 3.1 4.2 5.7
    8 2.0 3.1 4.2
    9 2.0 3.1
    10 2.0
    最优收敛比 1/3 1/4 1/5 1/6 1/6 1/6 1/6 1/6
    下载: 导出CSV

    表  3   矿井无线覆盖范围比值

    Table  3   Ratio of wireless coverage range in mines

    巷道类型 载波频率/GHz 无线传输损耗拟合公式 信号 覆盖距离/m ΔS ΔI
    用途 强度/dBm
    综采工作面 5.4 y = −9.336ln$\dfrac{x}{{\rm{m}}} $−28.33 载波侦听下界 −80 254.49 2.93 1.37
    干扰下界 −73 119.56
    稳定通信下界 −70 86.74
    拐角 5.4 y = −9.964ln $\dfrac{x}{{\rm{m}}} $−32.341 载波侦听下界 −80 119.81 2.75 1.35
    干扰下界 −73 59.04
    稳定通信下界 −70 43.43
    辅运巷 5.4 y = −7.597ln$\dfrac{x}{{\rm{m}}} $−24.714 载波侦听下界 −80 1 462.22 3.77 1.47
    干扰下界 −73 571.65
    稳定通信下界 −70 387.55
    掘进巷 5.4 y = −8.393ln$\dfrac{x}{{\rm{m}}} $−24.828 载波侦听下界 −80 716.49 3.28 1.41
    干扰下界 −73 309.46
    稳定通信下界 −70 218.23
    下载: 导出CSV

    表  4   矿井多跳路径链路竞争秩

    Table  4   Link competition rank of multi-hop path in mines

    直巷覆盖 不对称覆盖 不稳定覆盖
    链路号 链路号 链路号
    1 4.7 1 4.1 1 4.1
    2 5.7 2 3.2 2 3.2
    3 6.7 3 5.1 3 5.1
    4 7.7 4 4.2 4 4.2
    5 7.7 5 6.6 5 3.6
    6 7.7 6 5.7 6 4.6
    7 6.2 7 3.2 7 2.1
    8 5.2 8 4.2 8 3.6
    9 4.2 9 4.2 9 2.0
    10 3.0 10 1.0 10 1.0
    下载: 导出CSV

    表  5   实验部署参数

    Table  5   Experimental deployment parameters

    实验名称 第1条路径 第2条路径 第3条路径
    频率/
    GHz
    跳数 链路带宽/
    (Mbit·s−1
    多跳带宽/
    (Mbit·s−1
    频率/
    GHz
    跳数 链路带宽/
    (Mbit·s−1
    多跳带宽/
    (Mbit·s−1
    频率/
    GHz
    跳数 链路带宽/
    (Mbit·s−1
    多跳带宽/
    (Mbit·s−1
    楼道实验Ⅰ 1.4 2 20 10.00 2.4 2 20 10.00
    楼道实验Ⅱ 1.4 1 20 20.00 2.4 3 20 6.66
    楼道实验Ⅲ 2.4 4 20 5.00 5.8 4 80 20.00
    巷道实验Ⅰ 2.4 4 20 5.00 5.8 4 80 20.00 1.4 1 20 20
    巷道实验Ⅱ 1.4 3 20 6.66 2.4 7 20 2.85 5.8 10 80 8
    1.4 3 20 6.66 2.4 7 20 2.85 5.8 5 80 16
    文献实验Ⅰ 2.4 10 54 5.40
    2.4 15 54 3.60
    文献实验Ⅱ 2.4 15 56 3.73
    下载: 导出CSV

    表  6   实测链状网络首末传输速率及抖动范围

    Table  6   Measured end-to-end transmission rate and jitter range of the chain network

    实验名称 端到端方向 总跳数 理论带宽Ⅰ/
    (Mbit·s−1
    理论带宽Ⅱ/
    (Mbit·s−1
    实测首末速率/
    (Mbit·s−1
    首末速率抖动/
    (Mbit·s−1
    首末速率
    对应收敛比
    楼道实验Ⅰ A3→C1 4 5.00 10.00 5.1 4.70~5.90 1/3.9
    楼道实验Ⅱ A4→C1 4 5.00 6.60 4.2 2.70~5.90 1/4.6
    楼道实验Ⅲ B5→A1 8 2.50~10.00 5.00 4.9 2.70~7.30 1/7.4~1/10.8
    巷道实验Ⅰ C2→A1 9 2.20~8.80 5.00 5.1 4.20~6.00 1/4.7~1/13.3
    巷道实验Ⅱ B1→C1 15 1.30~5.30 2.85 4.5 3.15~6.90 1/6.3~1/11.5
    B6→C1 20 1.00~4.00 2.85 4.4 3.80~5.70 1/5.2~1/14.0
    文献实验Ⅰ 10 5.40 1.4 1/38.5
    15 3.60 0.6 1/90.0
    文献实验Ⅱ 15 3.73 2.0 1/28.0
    下载: 导出CSV
  • [1] 王虎. 矿井救援无线Mesh通信信号衰减特性研究[D]. 西安:西安科技大学,2019.

    WANG Hu. Research on signal attenuation characteristics of mine communication wireless Mesh[D]. Xi'an:Xi'an University of Science and Technology,2019.

    [2] 孙继平. 矿井无线传输的特点[J]. 煤矿设计,1999,31(4):20-22.

    SUN Jiping. Characteristics of wireless transmission in mine[J]. Coal Engineering,1999,31(4):20-22.

    [3] 孙继平,徐卿. 矿井无线中继应急通信系统实现方法[J]. 工矿自动化,2021,47(5):1-8.

    SUN Jiping,XU Qing. Implementation method of mine wireless relay emergency communication system[J]. Industry and Mine Automation,2021,47(5):1-8.

    [4] 郭星歌. 矿井无线网格网技术的研究及应用[D]. 徐州:中国矿业大学,2013.

    GUO Xingge. Research and application of wireless mesh network technology in coal mine[D]. Xuzhou:China University of Mining and Technology,2013.

    [5] 宋文,戴剑波,王飞,等. 矿井WMN多媒体应急通信系统多跳传输性能研究[J]. 煤炭学报,2011,36(4):706-710.

    SONG Wen,DAI Jianbo,WANG Fei,et al. Research on the multi-hop performance of underground mine emergency communication system based on WMN[J]. Journal of China Coal Society,2011,36(4):706-710.

    [6] 王晖. 一种单信道无线传感器网络的隐藏终端和暴露终端问题解决方案[J]. 电子技术应用,2008,34(9):87-90,95. DOI: 10.3969/j.issn.0258-7998.2008.09.032

    WANG Hui. A solution of hidden-terminal and exposed-terminal problem for single channel WSN network[J]. Application of Electronic Technique,2008,34(9):87-90,95. DOI: 10.3969/j.issn.0258-7998.2008.09.032

    [7] 虞万荣. 无线自组网MAC协议关键技术研究[D]. 长沙:国防科学技术大学,2006.

    YU Wanrong. Research of MAC protocols in wireless Ad Hoc networks[D]. Changsha:National University of Defense Technology,2006.

    [8] 张棋飞. 无线自组织网络媒体接入控制机制研究[D]. 武汉: 华中科技大学, 2007.

    ZHANG Qifei.Research on medium access control in wireless Ad Hoc networks[D]. Wuhan: Huazhong University of Science and Technology, 2007.

    [9] 赵海涛. 多跳无线网络中可用带宽的估计和预测[D]. 长沙:国防科学技术大学,2009.

    ZHAO Haitao. Available bandwidth estimation and prediction in multi-hop wireless networks[D]. Changsha:National University of Defense Technology,2009.

    [10] 刘少阳, 赵海涛, 魏急波, 等. 多跳无线网络中路径端到端容量的准确计算[J]. 软件学报,2013,24(1):164-174.

    LIU Shaoyang, ZHAO Haitao, WEI Jibo, et al. Accurate calculation of end-to-end throughput capacity for wireless multi-hop networks[J]. Journal of Software,2013,24(1):164-174.

    [11]

    SANZGIRI K,CHAKERES I D,BELDING-ROYER E M. Determining intra-flow contention along multihop paths in wireless networks[C]. First International Conference on Broadband Networks,San Jose,2004:611-620.

    [12] 宋安. 无线自组织网络性能分析模型与可用带宽估计研究[D]. 长沙:国防科学技术大学,2011.

    SONG An. Performance modeling and available bandwidth estimation in wireless Ad Hoc networks[D]. Changsha:National University of Defense Technology,2011.

    [13] 尹金钺. 井下无线电传播[J]. 煤炭科学技术,1974,2(1):72-81.

    YIN Jinyue. Underground radio propagation[J]. Coal Science and Technology,1974,2(1):72-81.

    [14] 肖公亮. 对无线电波在矿井中传播的几点看法[J]. 煤矿自动化,1980,6(1):61-62.

    XIAO Gongliang. Some views on the propagation of radio waves in mines[J]. Coal Mine Automation,1980,6(1):61-62.

    [15] 王胜坤,张立毅,张守兵. 矿井隧道中无线电波的自由传播[J]. 煤炭科学技术,1989,17(3):52-54,61.

    WANG Shengkun,ZHANG Liyi,ZHANG Shoubing. Free propagation of radio waves in mine tunnels[J]. Coal Science and Technology,1989,17(3):52-54,61.

    [16] 陈廷龙. 降低电波在隧道中传播损耗的措施[J]. 电波与天线,1995,20(2):43-46.

    CHEN Tinglong. Measures to reduce the propagation loss of radio waves in tunnels[J]. Radio Waves and Antennas,1995,20(2):43-46.

    [17] 孙继平,魏占永. 矿井隧道中电磁场能量的损耗[J]. 中国矿业大学学报,2002,31(6):575-578. DOI: 10.3321/j.issn:1000-1964.2002.06.007

    SUN Jiping,WEI Zhanyong. Loss of electromagnetic energy in mine tunnel[J]. Journal of China University of Mining & Technology,2002,31(6):575-578. DOI: 10.3321/j.issn:1000-1964.2002.06.007

    [18] 姚善化. 复杂矿井巷道中电磁波传播特性及相关技术研究[D]. 合肥:安徽大学,2010.

    YAO Shanhua. Study on characteristic of electromagnetic waves propagation and key technology in complicated coal mine tunnels[D]. Hefei:Anhui University,2010.

    [19] 王逸飞,王怡雯,许议丹,等. 基于射线追踪路径损耗模型的煤矿巷道基站选址方法[J]. 工矿自动化,2024,50(11):70-77.

    WANG Yifei,WANG Yiwen,XU Yidan,et al. Coal mine roadway base station site selection method based on ray-tracing path loss model[J]. Journal of Mine Automation,2024,50(11):70-77.

    [20] 侯伟彬. 基于混合算法的受限空间电波覆盖特性研究[D]. 北京:北京交通大学,2019.

    HOU Weibin. Research on radio coverage characteristics in confined environment based on hybrid method[D]. Beijing:Beijing Jiaotong University,2019.

    [21] 李大伟. 受限空间电波覆盖特性的研究[D]. 北京:北京交通大学,2016.

    LI Dawei. Research on the radio coverage characteristics in confined space[D]. Beijing:Beijing Jiaotong University,2016.

    [22] 王树奇,房涛,郭枳彤. 矿井不同位置信源无线电波传播特性研究[J]. 煤炭技术,2010,29(3):186-188.

    WANG Shuqi,FANG Tao,GUO Zhitong. Propagation characteristic of radio waves in limited space of mine tunnels[J]. Coal Technology,2010,29(3):186-188.

    [23] 成凌飞,曾文,史亚军. 矩形巷道电磁波传播混合模型分界点的研究[J]. 测控技术,2017,36(1):116-119. DOI: 10.3969/j.issn.1000-8829.2017.01.028

    CHENG Lingfei,ZENG Wen,SHI Yajun. Research on division point of radio wave propagation hybrid model in rectangular tunnel[J]. Measurement & Control Technology,2017,36(1):116-119. DOI: 10.3969/j.issn.1000-8829.2017.01.028

    [24] 成凌飞,卢超,鲍鑫行. 矩形巷道电磁波混合模型的模式数量研究[J]. 河南理工大学学报(自然科学版),2014,33(5):686-691. DOI: 10.3969/j.issn.1673-9787.2014.05.026

    CHENG Lingfei,LU Chao,BAO Xinhang. Mode number of electromagnetic waves of hybrid model in rectangular tunnels[J]. Journal of Henan Polytechnic University (Natural Science),2014,33(5):686-691. DOI: 10.3969/j.issn.1673-9787.2014.05.026

    [25] 官科. 轨道交通场景电波传播建模理论与方法研究[D]. 北京:北京交通大学,2014.

    GUAN Ke. Researches on wave propagation modeling theory and methodology in rail traffic scenarios[D]. Beijing:Beijing Jiaotong University,2014.

    [26] 石庆冬,孙继平. 弯曲矩形隧道电磁波衰减特性[J]. 中国矿业大学学报,2001,30(1):91-93. DOI: 10.3321/j.issn:1000-1964.2001.01.022

    SHI Qingdong,SUN Jiping. Attenuation characteristic of guided EM waves in curved rectangular mine tunnel[J]. Journal of China University of Mining & Technology,2001,30(1):91-93. DOI: 10.3321/j.issn:1000-1964.2001.01.022

    [27] 李飞腾. 矩形弯曲隧道中电磁波传播特性研究[D]. 焦作:河南理工大学,2018.

    LI Feiteng. Research on the electromagnetic wave propagation characteristics in curved rectangular tunnel[D]. Jiaozuo:Henan Polytechnic University,2018.

    [28] 孙继平,张长森. 列车对半圆拱形隧道中电磁波截止频率的影响[J]. 电波科学学报,2002,17(5):514-516,523. DOI: 10.3969/j.issn.1005-0388.2002.05.017

    SUN Jiping,ZHANG Changsen. Study on the influence to the cutoff frequency of semicircle-tunnel from the train[J]. Chinese Journal of Radio Science,2002,17(5):514-516,523. DOI: 10.3969/j.issn.1005-0388.2002.05.017

    [29] 孙继平,张长森. 圆形隧道中电磁波的传输特性[J]. 电波科学学报,2003,18(4):408-412. DOI: 10.3969/j.issn.1005-0388.2003.04.013

    SUN Jiping,ZHANG Changsen. The propagation characteristic of electromagnetic wave in a round tunnel[J]. Chinese Journal of Radio Science,2003,18(4):408-412. DOI: 10.3969/j.issn.1005-0388.2003.04.013

    [30] 薛少华,谭建平,邓积微,等. 矿井井筒中电磁波传播特性研究与无线通信试验[J]. 煤炭学报,2018,43(8):2361-2366.

    XUE Shaohua,TAN Jianping,DENG Jiwei,et al. Radio channel characterization study and wireless communication trial in mine shaft[J]. Journal of China Coal Society,2018,43(8):2361-2366.

    [31] 孙继平,彭铭,刘斌. 矿井无线传输测试分析与矿用5G优选工作频段研究[J]. 工矿自动化,2024,50(10):1-11,20.

    SUN Jiping,PENG Ming,LIU Bin. Analysis of wireless transmission tests in mines and preferred working frequency bands for mining 5G[J]. Journal of Mine Automation,2024,50(10):1-11,20.

    [32]

    NYCHIS G,LIU X. Wireless MAC protocols[EB/OL]. [2024-04-08]. http://www.cs.cmu.edu/~ srini/15-849/S06/lectures/06-mac-student.ppt.

    [33]

    KAWADIA V,KUMAR P. Power control and clustering in ad hoc networks[C]. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies,San Francisco,2003:459-469.

  • 期刊类型引用(8)

    1. 许鹏,李旭东,刘俊良,陈明刚,樊家豪,赵辉. 基于激光光幕的高速小目标信噪比研究. 光电子技术. 2024(01): 13-18+33 . 百度学术
    2. 陈成锋,梁运涛,田富超,董浩喆,冯文彬,何燕文. 光干涉式甲烷测定器的零级条纹自动定位及性能测试. 煤炭学报. 2021(S2): 830-839 . 百度学术
    3. 苟怡. 分布式光纤多参数监测及煤矿井下应用趋势探讨. 自动化技术与应用. 2020(04): 114-118+128 . 百度学术
    4. 张帅,王祖迅. 煤矿瓦斯抽采泵站无人值守技术研究. 煤. 2020(12): 1-3+6 . 百度学术
    5. 王祖迅. 基于S7-1200的瓦斯掺混监控系统. 煤矿安全. 2019(03): 85-88 . 百度学术
    6. 张群. 基于S7-1200的瓦斯智能混配系统设计与工艺技术研究. 矿业安全与环保. 2019(02): 79-83 . 百度学术
    7. 陈磊,丁军. 基于传感阵列的LNG船气体泄漏定位技术研究. 中国水运(下半月). 2019(11): 82-83 . 百度学术
    8. 陈磊,丁军. 基于传感阵列的LNG船气体泄漏定位技术研究. 中国水运(下半月). 2019(22): 82-83 . 百度学术

    其他类型引用(1)

图(9)  /  表(6)
计量
  • 文章访问数:  30
  • HTML全文浏览量:  6
  • PDF下载量:  4
  • 被引次数: 9
出版历程
  • 收稿日期:  2025-02-26
  • 修回日期:  2025-04-17
  • 网络出版日期:  2025-04-08
  • 刊出日期:  2025-04-14

目录

    /

    返回文章
    返回