强冲击特厚煤层见方复合构造区域降载防冲技术研究

焦彪, 马宏源, 郝宝利, 杨华东, 史星星, 张怀忠, 董哲

焦彪,马宏源,郝宝利,等. 强冲击特厚煤层见方复合构造区域降载防冲技术研究[J]. 工矿自动化,2025,51(4):146-152. DOI: 10.13272/j.issn.1671-251x.2025020035
引用本文: 焦彪,马宏源,郝宝利,等. 强冲击特厚煤层见方复合构造区域降载防冲技术研究[J]. 工矿自动化,2025,51(4):146-152. DOI: 10.13272/j.issn.1671-251x.2025020035
JIAO Biao, MA Hongyuan, HAO Baoli, et al. Research on load reduction and rockburst prevention technology in areas with square composite structures of extra-thick coal seams under strong impact[J]. Journal of Mine Automation,2025,51(4):146-152. DOI: 10.13272/j.issn.1671-251x.2025020035
Citation: JIAO Biao, MA Hongyuan, HAO Baoli, et al. Research on load reduction and rockburst prevention technology in areas with square composite structures of extra-thick coal seams under strong impact[J]. Journal of Mine Automation,2025,51(4):146-152. DOI: 10.13272/j.issn.1671-251x.2025020035

强冲击特厚煤层见方复合构造区域降载防冲技术研究

基金项目: 

国家自然科学基金面上项目(52174186);国家重点研发计划资助项目(2022YFC3004604)。

详细信息
    作者简介:

    焦彪(1983—),男,陕西渭南人,高级工程师,主要从事煤矿冲击地压防治与安全管理工作,E-mail:723196837@qq.com

    通讯作者:

    马宏源(1998—),男,山东枣庄人,主要从事冲击地压防治方面的研究工作,E-mail:mhy2021521@163.com

  • 中图分类号: TD324

Research on load reduction and rockburst prevention technology in areas with square composite structures of extra-thick coal seams under strong impact

  • 摘要:

    为揭示强冲击特厚煤层工作面回采至特殊区域的冲击危险性,提升回采期间防冲安全性,以胡家河煤矿401106工作面见方复合构造区域为工程背景,综合采用理论分析、现场实测等方法,研究了见方复合构造区域微震时空演化规律,阐释了煤岩体诱冲机理:见方复合构造区域载荷集中程度较高,微震事件频次与能量出现跃升,煤岩体裂隙破裂程度较发育,微震事件活跃程度相对剧烈,微震事件平均最大能量与每米释放能量相比常规回采区域分别升高了20.1%,26.3%,且近似呈“抛物线”分布;煤岩体在见方效应、构造作用、坚硬覆岩及相邻采空区等因素叠加影响下,冲击危险性升高。根据“分源、分类防治”思想,提出了“区域+局部”的降载防冲技术:针对孕育动静载源的坚硬覆岩,采用井下长孔区域压裂和顶板预裂爆破技术协同防控;针对积聚静载源的见方复合构造区域的煤体,采用帮部、底板松动爆破技术,降低了周期来压步距和动载系数,提升了围岩整体稳定性和回采期间的安全性。

    Abstract:

    To reveal the impact risk when mining advances into special areas of strong-impact extra-thick coal seams and to enhance rockburst prevention safety during the mining process, the square composite structure area of the 401106 working face at Hujiahe Mine was taken as the engineering background. Through a combination of theoretical analysis and field measurements, the spatiotemporal evolution characteristics of microseismic events in the square composite structure area were investigated, and the mechanism of rockburst induction was explained. It was found that the load concentration in the square composite structure area was relatively high, with a significant increase in both the frequency and energy of microseismic events. Coal-rock fractures were more developed, and microseismic activities were more intense compared to conventional areas. The average maximum energy and energy released per meter of microseismic events increased by 20.1% and 26.3%, respectively, and exhibited a parabolic distribution. Under the combined effects of the square structure effect, tectonic forces, hard overlying strata, and adjacent goafs, the impact risk of the coal-rock mass increased. Based on the principle of "source separation and classified prevention", a "regional + local" load reduction and rockburst prevention technology was proposed. Specifically, for hard overlying strata that generated dynamic and static load sources, a coordinated prevention and control approach using underground long-hole regional hydraulic fracturing and roof pre-split blasting technologies was applied. For the coal body in the square composite structure area, which accumulated static load sources, side and floor destress blasting techniques were used. These measures reduced the periodic weighting step and dynamic load factor, improved the overall stability of the surrounding rock, and enhanced safety during mining operations.

  • 图  1   胡家河煤矿位置

    Figure  1.   Location of Hujiahe Mine

    图  2   胡家河煤矿401106工作面位置

    Figure  2.   Location of 401106 working face in Hujiahe Mine

    图  3   401106工作面钻孔柱状图

    Figure  3.   Column chart of drilling holes in 401106 working face

    图  4   微震事件频次与能量时序曲线

    Figure  4.   Temporal variations of microseismic frequency and energy

    图  5   微震事件最大能量与每米释放能量时序曲线

    Figure  5.   Temporal variations of maximum microseismic energy and energy released per meter

    图  6   工作面微震超前分布

    Figure  6.   Distribution of microseismic advance in working face

    图  7   构造区域应力场分布

    Figure  7.   Distribution of stress field in the construction area

    图  8   坚硬覆岩扰动诱冲原理

    Figure  8.   Principle of rockburst induced by hard overlying strata disturbance

    图  9   相邻采空区影响

    Figure  9.   Impact of adjacent goafs

    图  10   降载防冲技术

    Figure  10.   Load reduction and rockburst prevention technology

    图  11   顶板预裂爆破

    Figure  11.   Roof pre-splitting blasting

    图  12   煤层松动爆破

    Figure  12.   Coal seam destress blasting

    图  13   周期来压步距与动载系数

    Figure  13.   Periodic weighting and dynamic load coefficient

  • [1] 潘一山,宋义敏,刘军. 我国煤矿冲击地压防治的格局、变局和新局[J]. 岩石力学与工程学报,2023,42(9):2081-2095.

    PAN Yishan,SONG Yimin,LIU Jun. Pattern,change and new situation of coal mine rockburst prevention and control in China[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(9):2081-2095.

    [2] 齐庆新,李一哲,赵善坤,等. 我国煤矿冲击地压发展70年:理论与技术体系的建立与思考[J]. 煤炭科学技术,2019,47(9):1-40.

    QI Qingxin,LI Yizhe,ZHAO Shankun,et al. Seventy years development of coal mine rockburst in China:establishment and consideration of theory and technology system[J]. Coal Science and Technology,2019,47(9):1-40.

    [3] 潘俊锋,夏永学,王书文,等. 我国深部冲击地压防控工程技术难题及发展方向[J]. 煤炭学报,2024,49(3):1291-1302.

    PAN Junfeng,XIA Yongxue,WANG Shuwen,et al. Technical difficulties and emerging development directions of deep rock burst prevention in China[J]. Journal of China Coal Society,2024,49(3):1291-1302.

    [4] 潘俊锋,刘少虹,马文涛,等. 陕西煤矿冲击地压发生规律与分类防治[J]. 煤炭科学技术,2024,52(1):95-105. DOI: 10.12438/cst.2023-1492

    PAN Junfeng,LIU Shaohong,MA Wentao,et al. Occurrence law and classification prevention of rock burst in coal mines of Shaanxi Province[J]. Coal Science and Technology,2024,52(1):95-105. DOI: 10.12438/cst.2023-1492

    [5] 崔峰,陆长亮,王昊,等. 缓倾斜煤层坚硬顶板断层活化微震时空演化规律及诱冲机制[J]. 采矿与岩层控制工程学报,2024,6(3):5-19.

    CUI Feng,LU Changliang,WANG Hao,et al. Spatio-temporal evolution of microseismic activation of hard-roof faults in gently dipping coal seams and the mechanism of induced shocks[J]. Journal of Mining and Strata Control Engineering,2024,6(3):5-19.

    [6] 窦林名,田鑫元,曹安业,等. 我国煤矿冲击地压防治现状与难题[J]. 煤炭学报,2022,47(1):152-171.

    DOU Linming,TIAN Xinyuan,CAO Anye,et al. Present situation and problems of coal mine rock burst prevention and control in China[J]. Journal of China Coal Society,2022,47(1):152-171.

    [7] 姜福兴,魏全德,王存文,等. 巨厚砾岩与逆冲断层控制型特厚煤层冲击地压机理分析[J]. 煤炭学报,2014,39(7):1191-1196.

    JIANG Fuxing,WEI Quande,WANG Cunwen,et al. Analysis of rock burst mechanism in extra-thick coal seam controlled by huge thick conglomerate and thrust fault[J]. Journal of China Coal Society,2014,39(7):1191-1196.

    [8] 潘俊锋,刘少虹,秦子晗,等. 深部盘区巷道群集中静载荷型冲击地压机理与防治[J]. 煤炭学报,2018,43(10):2679-2686.

    PAN Junfeng,LIU Shaohong,QIN Zihan,et al. Mechanism and prevention of concentrated static load type rock burst of roadway group in deep mining area[J]. Journal of China Coal Society,2018,43(10):2679-2686.

    [9]

    CAI Wu,DOU Linming,SI Guangyao,et al. Fault-induced coal burst mechanism under mining-induced static and dynamic stresses[J]. Engineering,2021,7(5):306-334.

    [10] 夏永学,潘俊锋,谢非,等. 特厚煤层大巷复合构造区重复冲击致灾机制及控制技术[J]. 岩石力学与工程学报,2022,41(11):2199-2209.

    XIA Yongxue,PAN Junfeng,XIE Fei,et al. Disaster mechanism and control technology of large roadway group with repeated impact in extra-thick coal seam[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(11):2199-2209.

    [11] 王联合,曹安业,郭文豪,等. “断层−褶皱” 构造区巷道冲击地压机理及失稳规律[J]. 采矿与安全工程学报,2023,40(1):69-81,90.

    WANG Lianhe,CAO Anye,GUO Wenhao,et al. Rock burst mechanism and characteristics of roadway in "fault-fold" structure area[J]. Journal of Mining & Safety Engineering,2023,40(1):69-81,90.

    [12] 谭云亮,郭伟耀,辛恒奇,等. 煤矿深部开采冲击地压监测解危关键技术研究[J]. 煤炭学报,2019,44(1):160-172.

    TAN Yunliang,GUO Weiyao,XIN Hengqi,et al. Key technology of rock burst monitoring and control in deep coal mining[J]. Journal of China Coal Society,2019,44(1):160-172.

    [13] 孔令海,齐庆新,姜福兴,等. 长壁工作面采空区见方形成异常来压的微震监测研究[J]. 岩石力学与工程学报,2012,31(增刊2):3889-3896.

    KONG Linghai,QI Qingxin,JIANG Fuxing,et al. Abnormal strata stress resulted from goaf square of longwall face based on microseismic monitoring[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(S2):3889-3896.

    [14] 王存文,姜福兴,孙庆国,等. 基于覆岩空间结构理论的冲击地压预测技术及应用[J]. 煤炭学报,2009,34(2):150-155. DOI: 10.3321/j.issn:0253-9993.2009.02.002

    WANG Cunwen,JIANG Fuxing,SUN Qingguo,et al. The forecasting method of rock-burst and the application based on overlying multi-strata spatial structure theory[J]. Journal of China Coal Society,2009,34(2):150-155. DOI: 10.3321/j.issn:0253-9993.2009.02.002

    [15] 高家明,夏永学,杨光宇,等. 复合构造区域煤岩体应力分布及冲击地压危险性评价[J]. 工矿自动化,2021,47(3):14-19,26.

    GAO Jiaming,XIA Yongxue,YANG Guangyu,et al. The stress distribution of coal and rock mass and the risk evaluation of rock burst in the composite structure area[J]. Industry and Mine Automation,2021,47(3):14-19,26.

    [16] 曹安业,薛成春,吴芸,等. 煤矿褶皱构造区冲击地压机理研究及防治实践[J]. 煤炭科学技术,2021,49(6):82-87.

    CAO Anye,XUE Chengchun,WU Yun,et al. Study on mechanism of rock burst in fold structure area of coal mine and its prevention practice[J]. Coal Science and Technology,2021,49(6):82-87.

    [17] 陈学华,吕鹏飞,宋卫华,等. 综放开采过断层冲击地压危险分析及防治技术[J]. 中国安全科学学报,2016,26(5):81-87.

    CHEN Xuehua,LYU Pengfei,SONG Weihua,et al. Analysis and control technology of danger of rock burst when fully mechanized caving passing through fault[J]. China Safety Science Journal,2016,26(5):81-87.

    [18] 李东,姜福兴,王存文,等. “见方效应” 与“应力击穿效应” 联动致灾机理及防治技术研究[J]. 采矿与安全工程学报,2018,35(5):1014-1021.

    LI Dong,JIANG Fuxing,WANG Cunwen,et al. Study on the mechanism and prevention technology of "square position" and "stress breakdown effect" inducing rockburst[J]. Journal of Mining & Safety Engineering,2018,35(5):1014-1021.

    [19] 闫耀东,潘俊锋,席国军,等. 综放开采见方构造区冲击危险性分析及防治研究[J]. 工矿自动化,2021,47(10):7-13.

    YAN Yaodong,PAN Junfeng,XI Guojun,et al. Impact hazard analysis and prevention research of square structure area in fully mechanized working face[J]. Industry and Mine Automation,2021,47(10):7-13.

    [20] 易恩兵. 深井工作面断层区域冲击地压防治分析[J]. 矿业研究与开发,2018,38(12):57-60.

    YI Enbing. Analysis and prevention on rock burst in fault area of working face in deep mine[J]. Mining Research and Development,2018,38(12):57-60.

    [21] 高家明,潘俊锋,杜涛涛,等. 我国东北矿区冲击地压发生特征及防治现状[J]. 煤炭科学技术,2021,49(3):49-56.

    GAO Jiaming,PAN Junfeng,DU Taotao,et al. Characteristics and prevention and control status quo of rock burst in Northeastern Mining Area of China[J]. Coal Science and Technology,2021,49(3):49-56.

  • 期刊类型引用(9)

    1. 王力,黄文辉,王军,贾远温,刘振笃. 35kV线路下交叉跨越10kV线路弧光放电分析. 电气传动自动化. 2024(03): 58-61 . 百度学术
    2. 周之华,谢松伟,吴育腾,张海台,周立波,钱程. 谐振接地系统单相接地故障熄弧时刻识别方法. 供用电. 2022(12): 45-50+58 . 百度学术
    3. 乔东伟,宫德锋,谢松伟,薛永端,孙庆森,亓鹏. 小电流接地故障熄弧后电气量对暂态选线方法的影响. 电力系统及其自动化学报. 2022(12): 114-120 . 百度学术
    4. 刘科研,盛万兴,董伟杰. 配电网弧光接地故障建模仿真与实验研究综述. 高电压技术. 2021(01): 12-22 . 百度学术
    5. 施正钗. 谐振接地系统弧光接地过电压自动抑制方法. 电子设计工程. 2021(02): 72-75+80 . 百度学术
    6. 夏楠. 煤矿供电地面监控系统的设计. 自动化应用. 2020(08): 116-117 . 百度学术
    7. 张增强,陈伟伟,薛静杰,徐龙秀,翟旭京,吴伟丽. 面向泛在电力物联网的配电网过电压类故障识别边缘计算节点架构研究. 电气应用. 2020(09): 86-92 . 百度学术
    8. 张增强,陈伟伟,薛静杰,徐龙秀,翟旭京,吴伟丽. 基于时域谱熵的多电缆线路弧光接地过电压特征快速识别. 数学的实践与认识. 2020(17): 81-89 . 百度学术
    9. 刘聚财,耿蒲龙,曲兵妮,宋建成,罗超,李鑫,田敏. 矿井供电系统弧光接地过电压形成过程研究. 工矿自动化. 2018(04): 69-74 . 本站查看

    其他类型引用(2)

图(13)
计量
  • 文章访问数:  20
  • HTML全文浏览量:  3
  • PDF下载量:  2
  • 被引次数: 11
出版历程
  • 收稿日期:  2025-02-17
  • 修回日期:  2025-04-14
  • 网络出版日期:  2025-04-08
  • 刊出日期:  2025-04-14

目录

    /

    返回文章
    返回