基于多传感器融合的液压支架位姿精确感知方法

马长青, 李旭阳, 李峰, 毛俊杰, 魏祥宇, 马肖杨

马长青,李旭阳,李峰,等. 基于多传感器融合的液压支架位姿精确感知方法[J]. 工矿自动化,2025,51(4):114-119. DOI: 10.13272/j.issn.1671-251x.2025010040
引用本文: 马长青,李旭阳,李峰,等. 基于多传感器融合的液压支架位姿精确感知方法[J]. 工矿自动化,2025,51(4):114-119. DOI: 10.13272/j.issn.1671-251x.2025010040
MA Changqing, LI Xuyang, LI Feng, et al. Precise perception method for position and posture of hydraulic supports based on multi-sensor fusion[J]. Journal of Mine Automation,2025,51(4):114-119. DOI: 10.13272/j.issn.1671-251x.2025010040
Citation: MA Changqing, LI Xuyang, LI Feng, et al. Precise perception method for position and posture of hydraulic supports based on multi-sensor fusion[J]. Journal of Mine Automation,2025,51(4):114-119. DOI: 10.13272/j.issn.1671-251x.2025010040

基于多传感器融合的液压支架位姿精确感知方法

基金项目: 

国家自然科学基金项目(52104092);山东省自然科学基金项目(ZR2020QE120);泰安市科技创新发展项目(2021GX054)。

详细信息
    作者简介:

    马长青(1980—),男,山东济宁人,教授,博士后,研究方向为矿山智能监测技术与装备、矿山压力与围岩控制,E-mail:mcq091016@126.com

    通讯作者:

    李旭阳(1998—),男,山东淄博人,硕士研究生,研究方向为矿山机械设备,E-mail:18353356382@163.com

  • 中图分类号: TD353

Precise perception method for position and posture of hydraulic supports based on multi-sensor fusion

  • 摘要:

    为精确感知扰动环境下液压支架位姿信息,提出了一种基于多传感器融合的液压支架位姿精确感知方法。首先,在液压支架顶梁、掩护梁、后连杆和底座4个构件上部署九轴姿态传感器,利用其陀螺仪、加速度计和磁力计分别解算出其所在构件的横滚角、俯仰角和偏航角等位姿数据;然后,通过无迹卡尔曼滤波(UKF)算法和梯度下降(IGD)算法(IGD−UKF算法)对位姿数据进行滤波处理,降低扰动因素对位姿数据的干扰;最后,采用自适应加权融合算法对滤波处理后的液压支架顶梁和底座的偏航角和横滚角数据进行融合处理,消除外界振动、噪声等因素引起的液压支架顶梁和底座传感器数据误差。对施加扰动下液压支架顶梁低头和抬头、底座低头和抬头、液压支架左倾和右倾、液压支架左偏和右偏等工况下顶梁、掩护梁、后连杆和底座的位姿进行感知实验,结果表明:经IGD−UKF算法处理后的数据曲线波动趋于平缓,在抑制振荡、减小振幅上的效果明显;液压支架偏航角误差为0.001 8~0.025 1°,平均绝对误差为0.004 8°,横滚角误差为0.001 4~0.028 1°,平均绝对误差为0.004 7°,实现了扰动环境下液压支架位姿的精确感知。

    Abstract:

    This study aims to accurately perceive the position and posture information of hydraulic supports in a disturbed environment. To address this, a precise perception method for the position and posture of hydraulic supports based on multi-sensor fusion was proposed. Firstly, nine-axis attitude sensors were deployed on four components of the hydraulic support, including top beam, shield beam, rear linkage, and base, to measure roll, pitch, and yaw angles using gyroscopes, accelerometers, and magnetometers. Then, the position and posture data was filtered using the Unscented Kalman Filter (UKF) algorithm and Improved Gradient Descent (IGD) algorithm (IGD-UKF algorithm), reducing interference from disturbance factors. Finally, an adaptive weighted fusion algorithm was employed to merge the filtered yaw and roll angle data of the top beam and base of hydraulic supports, eliminating data deviations caused by external vibrations, noise, and other factors. Perception experiments were conducted on the position and posture of top beam, shield beam, rear linkage, and base under various working conditions. The disturbances included the lowering and raising of top beam and base, as well as left-leaning, right-leaning, left-deviating and right-deviating of hydraulic supports. The study found that the data curves processed by the IGD-UKF algorithm exhibited smoother fluctuations, significantly suppressing oscillations and reducing amplitude. The yaw angle error of hydraulic supports ranged from 0.001 8° to 0.025 1°, with an average absolute error of 0.004 8°. The roll angle error ranged from 0.001 4° to 0.028 1°, with an average absolute error of 0.004 7°. The results indicate that the precise perception of the position and posture of hydraulic supports in a disturbed environment is achieved.

  • 煤矿井下环境的复杂扰动和回采过程中煤层顶板、底板的不规则变化,造成液压支架支护位姿发生变化,可能造成支护失效,导致安全事故发生[1-3]。迅速且精确地获取液压支架支护位姿信息是当前综采工作面智能化进程中亟待攻克的关键技术挑战之一[4-5]

    在液压支架姿态感知研究方面,郭周斌[6]采用压力传感器、行程传感器和倾角传感器对液压支架位姿进行感知,但未考虑到井下恶劣环境导致传感器产生误差,未采取有效的滤波手段,缺乏多传感器间的数据融合。谢明明[7]采用双轴倾角传感器对液压支架构件的倾角数据进行采集,实现了对液压支架关键构件姿态角度的计算。王忠乐[8]利用测高传感器配合倾角传感器对液压支架高度、倾角变化情况进行分析,实现了支架姿态实时监测,但仅在底座上安装1个倾角传感器,可能导致测得的姿态与真实姿态存在较大误差。谢嘉成[9]将双轴倾角传感器布置在液压支架关键构件处,实现了对液压支架的位姿监测,但在复杂工况下监测误差可能较大。张坤等[10]利用超声波传感器与九轴姿态传感器实现了对超前液压支架姿态的感知,但仅采用卡尔曼滤波算法易陷入局部极小值点,寻优结果存在误差。崔宽宽[11]将倾角传感器部署于液压支架顶梁、底座与后连杆中,通过卡尔曼滤波算法提升位姿监测的准确性,但卡尔曼滤波算法常用于求解线性问题,而液压支架位姿感知属于非线性系统状态估计问题,可能导致估计误差偏大。Chen Ningning等[12]将研制的光纤光栅倾角传感器和光纤光栅压力传感器安装于液压支架上,实现了对液压支架位姿数据和压力数据的实时监测,虽然光纤光栅传感器具有高精度和抗电磁干扰的优点,但传感器受到噪声、振动等因素的干扰,未采用滤波算法进一步提升精度。Chen Hongyue等[13]采用广角超声波传感器与倾角传感器协同监测,通过融合算法对传感器数据进行融合,实现恶劣井下环境下液压支架的姿态感知,但仅能感知得到偏航角与横滚角数据,未涉及俯仰角数据。Gao Kuidong等[14]将拉线位移传感器、视觉传感器、惯性测量单元应用于液压支架位姿感知,并引入粒子群优化算法,但视觉传感器在井下恶劣环境中易受煤炭粉尘、外界振动等因素的影响,导致位姿感知精度不高,同时所需成本较高。

    为了精确感知扰动环境下液压支架位姿,本文提出一种基于多传感器融合的液压支架位姿精确感知方法。在液压支架顶梁、掩护梁、后连杆和底座4个构件上部署九轴姿态传感器采集数据,并解算出其所在构件的横滚角、俯仰角和偏航角等位姿数据;通过无迹卡尔曼滤波(Unscented Kalman Filter,UKF)算法和改进梯度下降(Improved Gradient Descent,IGD)算法对位姿数据进行滤波处理;采用自适应加权融合算法对滤波处理后的液压支架顶梁和底座的偏航角和横滚角数据进行融合处理,实现液压支架位姿精确感知。

    液压支架支护位姿精确感知流程如图1所示。通过在液压支架各关键构件中部署九轴姿态传感器,解算出其所在构件的横滚角、俯仰角和偏航角等位姿数据,并通过IGD−UKF算法进行滤波处理;为消除外界振动、噪声等因素引起的液压支架顶梁和底座传感器数据误差,利用自适应加权融合算法对滤波处理后的液压支架顶梁与底座横滚角和偏航角位姿数据进行融合,输出精确的液压支架位姿数据。

    图  1  液压支架支护位姿精确感知流程
    Figure  1.  Precise perception process for position and posture of hydraulic supports

    建立地理惯性坐标系[15],定义正东方向为xn轴正方向,正北方向为yn轴正方向,根据右手正交坐标系定则,定义垂直于大地内部指向天空为zn轴正方向;建立液压支架顶梁坐标系,定义xb轴正方向为液压支架随采煤机推移方向,zb轴正方向垂直于液压支架顶梁向上,yb轴正方向指向液压支架一侧且与xb轴、zb轴组成右手正交坐标系。将九轴姿态传感器分别布置于液压支架顶梁、掩护梁、后连杆和底座4个构件上,如图2所示。九轴姿态传感器由三轴陀螺仪、三轴加速度计、三轴磁力计组成,分别采集所安装构件的相关数据,经解算得到所安装构件的俯仰角横滚角和偏航角等位姿数据[16-18],并用四元数法[19]表示。

    图  2  九轴姿态传感器部署
    Figure  2.  Deployment of nine-axis attitude sensors

    在液压支架支护过程中,由于液压支架工作循环中各构件间相互运动,受摩擦、振动、噪声等扰动因素影响,若仅依靠在液压支架关键构件上九轴姿态传感器的输出数据来判断液压支架位姿,会出现较大的计算误差。因此采用IGD−UKF滤波算法[20]对液压支架关键构件的位姿数据进行滤波处理。IGD−UKF算法流程如图3所示,通过状态预测和观测预测得到变量和误差协方差矩阵,并计算增益矩阵,在目标函数的迭代过程中添加扰动因子,在状态更新中利用IGD优化UKF算法的噪声协方差,输出最优后验估计,提高复杂环境下状态估计的精度。

    图  3  IGD−UKF算法流程
    Figure  3.  Algorithm flowchart of IGD-UKF algorithm

    液压支架随采煤机向前推进过程中,因截割量存在差别会导致底板出现凹凸不平。为使液压支架保持有效支护,即液压支架顶梁与顶板贴合、底座与底板贴合,在这种情况下可能会导致液压支架顶梁与底座发生不同角度的俯仰;但对于横滚角和偏航角来说,液压支架在支护中由于自身无法发生扭转,理论上液压支架顶梁和底座的横滚角和偏航角是相同的;但在实际工作过程中,因为振动、噪声等其他外界因素的影响,液压支架顶梁和底座的横滚角和偏航角也会出现偏差。为消除偏差,采用自适应加权融合算法对权重进行自适应分配,将多个传感器数据进行融合[21]

    自适应加权融合算法通过数学优化方法在约束条件下求解最优权重,确保融合结果满足总方差最小原则。自适应加权融合算法流程如图4所示。对经IGD−UKF滤波算法处理的液压支架顶梁和底座的横滚角和偏航角数据点进行方差求解,判断是否满足总方差最小原则,若满足则根据数据点方差大小对数据点权重进行自适应分配,以保证输出最终位姿融合结果具有较高的准确性。

    图  4  自适应加权融合算法流程
    Figure  4.  Algorithm flowchart of adaptive weighted fusion

    最终获得的融合数据可表示为

    $$ x' = \sum\limits_{i = 1}^j {{\omega _i}\bar{{x_i}} \left( k \right)} $$ (1)

    式中:$ \bar{{x_i}} \left( k \right) $为传感器i采集k组数据得到的均值;$ {\omega _i} $为传感器i测得数据的权值;j为传感器个数。

    融合数据的方差为

    $$ {\bar \sigma ^2} = \frac{1}{j}\sum\limits_{i = 1}^j {{\omega _i}\mu _i^2} $$ (2)

    式中$ \mu _i^{} $为传感器i的测量值与真实值间误差。

    随着权重分配的动态调整,方差趋于减小,从而提高数据精度。

    搭建液压支架位姿感知实验平台,如图5所示。通过顶板控制油缸带动顶板运动,以模拟顶板对液压支架顶梁施加的压力,同时顶板和底板均可前后左右倾斜,以模拟开采中顶板和底板的变化;将HWT905−CAN九轴姿态传感器分别安装在液压支架顶梁、掩护梁、后连杆和底座上,并通过RS485−USB模块建立九轴姿态传感器与数据采集平台之间的通信;通过实验控制台控制液压支架与顶板运动,液压泵站为各液压部件的伸缩提供动力;九轴姿态传感器采集液压支架在顶梁低头和抬头、底座低头和抬头、液压支架左倾和右倾、液压支架左偏和右偏等情况下的位姿数据,采集频率为10 Hz。采集数据时对液压支架顶梁进行手动敲击,以模拟振动干扰。

    图  5  液压支架位姿感知实验平台
    Figure  5.  Experimental platform for position and posture perception of hydraulic supports

    选取九轴姿态传感器采集并解算出的底座和顶梁各600组包含俯仰角、横滚角、偏航角的数据导入Matlab软件中,分别利用UKF算法和IGD−UKF算法进行滤波处理,效果如图6所示。可看出相对于UKF算法,IGD−UKF算法处理后的数据曲线波动趋于平缓,在抑制振荡、减小振幅上的效果明显。

    图  6  UKF与IGD−UKF滤波效果对比
    Figure  6.  Comparison of filtering effects between UKF and IGD-UKF

    将经过IGD−UKF算法处理后的液压支架顶梁与底座的横滚角、偏航角数据导入自适应加权融合算法模型中,得到的融合结果与仅经过IGD−UKF算法处理后的液压支架顶梁与底座的横滚角、偏航角进行对比,如图7所示,可看出自适应加权融合算法抑制了顶梁与底座横滚角、俯仰角数据波动。利用Matlab软件标记出图7的最小误差与最大误差,通过提取各样本点数据的绝对误差并求解平均值,得到平均绝对误差,结果见表1,可看出自适应加权融合算法提升了液压支架位姿的感知精度。

    图  7  液压支架顶梁与底座姿态角融合前后效果对比
    Figure  7.  Comparison of effects before and after fusion of attitude angles of top beam and base of hydraulic supports
    表  1  自适应加权融合算法融合位姿数据误差结果
    Table  1.  Error results of position and posture data fused by adaptive weighted fusion algorithm (°)
    液压支架姿态角最小误差最大误差平均绝对误差
    偏航角0.001 80.025 10.004 8
    横滚角0.001 40.028 10.004 7
    下载: 导出CSV 
    | 显示表格

    1) 将九轴姿态传感器安装于液压支架顶梁、掩护梁、后连杆和底座进行数据采集并解算出所在构件的位姿数据,利用IGD−UKF算法对位姿数据进行滤波处理,抑制了数据振荡。通过自适应加权融合算法对滤波处理后不同构件的相同位姿数据进行融合,以减小振动等对液压支架位姿感知精度的干扰。

    2) 搭建了液压支架位姿感知实验平台,开展了IGD−UKF算法滤波实验和自适应加权融合算法融合实验,得出液压支架偏航角误差为0.001 8~0.025 1°,平均绝对误差为0.004 8°,横滚角误差为0.001 4~0.028 1°,平均绝对误差为0.004 7°,实现了液压支架位姿的精确感知。

  • 图  1   液压支架支护位姿精确感知流程

    Figure  1.   Precise perception process for position and posture of hydraulic supports

    图  2   九轴姿态传感器部署

    Figure  2.   Deployment of nine-axis attitude sensors

    图  3   IGD−UKF算法流程

    Figure  3.   Algorithm flowchart of IGD-UKF algorithm

    图  4   自适应加权融合算法流程

    Figure  4.   Algorithm flowchart of adaptive weighted fusion

    图  5   液压支架位姿感知实验平台

    Figure  5.   Experimental platform for position and posture perception of hydraulic supports

    图  6   UKF与IGD−UKF滤波效果对比

    Figure  6.   Comparison of filtering effects between UKF and IGD-UKF

    图  7   液压支架顶梁与底座姿态角融合前后效果对比

    Figure  7.   Comparison of effects before and after fusion of attitude angles of top beam and base of hydraulic supports

    表  1   自适应加权融合算法融合位姿数据误差结果

    Table  1   Error results of position and posture data fused by adaptive weighted fusion algorithm (°)

    液压支架姿态角最小误差最大误差平均绝对误差
    偏航角0.001 80.025 10.004 8
    横滚角0.001 40.028 10.004 7
    下载: 导出CSV
  • [1] 王国法,徐亚军,张金虎,等. 煤矿智能化开采新进展[J]. 煤炭科学技术,2021,49(1):1-10.

    WANG Guofa,XU Yajun,ZHANG Jinhu,et al. New development of intelligent mining in coal mines[J]. Coal Science and Technology,2021,49(1):1-10.

    [2] 李首滨. 国产液压支架电液控制系统技术现状[J]. 煤炭科学技术,2010,38(1):53-56.

    LI Shoubin. Technical status of domestic electronic-hydraulic control system for hydraulic powered support[J]. Coal Science and Technology,2010,38(1):53-56.

    [3] 王方田,尚俊剑,赵宾,等. 回采巷道动压区锚索强化支护机理及参数优化设计[J]. 中国矿业大学学报,2022,51(1):56-66. DOI: 10.3969/j.issn.1000-1964.2022.1.zgkydxxb202201006

    WANG Fangtian,SHANG Junjian,ZHAO Bin,et al. Strengthened anchor cable support mechanism and its parameter optimization design for roadway's dynamic pressure section[J]. Journal of China University of Mining & Technology,2022,51(1):56-66. DOI: 10.3969/j.issn.1000-1964.2022.1.zgkydxxb202201006

    [4] 高有进,杨艺,常亚军,等. 综采工作面智能化关键技术现状与展望[J]. 煤炭科学技术,2021,49(8):1-22.

    GAO Youjin,YANG Yi,CHANG Yajun,et al. Status and prospect of key technologies of intelligentization of fully-mechanized coal mining face[J]. Coal Science and Technology,2021,49(8):1-22.

    [5] 庞义辉. 液压支架支护状态感知与数据处理技术[J]. 工矿自动化,2021,47(11):66-73.

    PANG Yihui. Support state perception and data processing technology of hydraulic support[J]. Industry and Mine Automation,2021,47(11):66-73.

    [6] 郭周斌. 综采面中液压支架的状态感知与分析[J]. 能源与节能,2024(6):205-208. DOI: 10.3969/j.issn.2095-0802.2024.06.061

    GUO Zhoubin. State perception and analysis of hydraulic support in fully mechanized mining face[J]. Energy and Energy Conservation,2024(6):205-208. DOI: 10.3969/j.issn.2095-0802.2024.06.061

    [7] 谢明明. 矿用液压支架姿态监测技术及系统研究[J]. 江西煤炭科技,2022(4):195-197. DOI: 10.3969/j.issn.1006-2572.2022.04.062

    XIE Mingming. Study on attitude monitoring technology and system of mining hydraulic support[J]. Jiangxi Coal Science & Technology,2022(4):195-197. DOI: 10.3969/j.issn.1006-2572.2022.04.062

    [8] 王忠乐. 综采液压支架姿态监测及控制技术[J]. 工矿自动化,2022,48(增刊2):116-117,137.

    WANG Zhongle. Attitude monitoring and control technology of fully mechanized mining hydraulic support[J]. Journal of Mine Automation,2022,48(S2):116-117,137.

    [9] 谢嘉成. VR环境下综采工作面“三机” 监测与动态规划方法研究[D]. 太原:太原理工大学,2018.

    XIE Jiacheng. Research on "three machines" monitoring and dynamic planning method of fully mechanized mining face in VR environment[D]. Taiyuan:Taiyuan University of Technology,2018.

    [10] 张坤,孙政贤,刘亚,等. 基于信息融合技术的超前液压支架姿态感知方法及实验验证[J]. 煤炭学报,2023,48(增刊1):345-356.

    ZHANG Kun,SUN Zhengxian,LIU Ya,et al. Research and experimental verification of attitude perception method of advanced hydraulic support based on information fusion technology[J]. Journal of China Coal Society,2023,48(S1):345-356.

    [11] 崔宽宽. 煤矿井下液压支架位姿监测装置[J]. 机械制造,2024,62(12):86-88. DOI: 10.3969/j.issn.1000-4998.2024.12.023

    CUI Kuankuan. Coal mine underground hydraulic support position and posture monitoring device[J]. Machinery,2024,62(12):86-88. DOI: 10.3969/j.issn.1000-4998.2024.12.023

    [12]

    CHEN Ningning,FANG Xinqiu,LIANG Minfu,et al. Research on hydraulic support attitude monitoring method merging FBG sensing technology and AdaBoost algorithm[J]. Sustainability,2023,15(3). DOI: 10.3390/su15032239.

    [13]

    CHEN Hongyue,CHEN Hongyan,XU Yajun,et al. Research on attitude monitoring method of advanced hydraulic support based on multi-sensor fusion[J]. Measurement,2022,187. DOI: 10.1016/j.measurement.2021.110341.

    [14]

    GAO Kuidong,XU Wenbo,ZHANG Hongyang,et al. Relative position and posture detection of hydraulic support based on particle swarm optimization[J]. IEEE Access,2020,8:200789-200811. DOI: 10.1109/ACCESS.2020.3035576

    [15] 张树楠. 基于多传感器融合的液压支架位姿监测方法研究[D]. 西安:西安科技大学,2020.

    ZHANG Shunan. Research on pose monitoring method of hydraulic support based on multi-sensor fusion[D]. Xi'an:Xi'an University of Science and Technology,2020.

    [16] 张静,李维刚,张骏虎,等. 基于卡尔曼滤波的MIMU姿态解算算法研究[J]. 计算机测量与控制,2020,28(12):233-237,242.

    ZHANG Jing,LI Weigang,ZHANG Junhu,et al. Investigation of MIMU attitude algorithm based on Kalman filter[J]. Computer Measurement & Control,2020,28(12):233-237,242.

    [17] 张杰. 基于MEMS陀螺仪和加速度计的动态倾角传感器[J]. 机械设计与制造,2012(9):141-143. DOI: 10.3969/j.issn.1001-3997.2012.09.050

    ZHANG Jie. Dynamic tilt sensor based on MEMS gyro and accelerometer[J]. Machinery Design & Manufacture,2012(9):141-143. DOI: 10.3969/j.issn.1001-3997.2012.09.050

    [18] 李文宽,蔡浩原,赵晟霖,等. 六轴IMU补偿的磁力计动态稳定校准[J]. 仪表技术与传感器,2021(1):14-19.

    LI Wenkuan,CAI Haoyuan,ZHAO Shenglin,et al. Six-axis IMU compensated magnetometer dynamic stable calibration[J]. Instrument Technique and Sensor,2021(1):14-19.

    [19] 卢春贵,宋单阳,宋建成,等. 基于捷联惯导的刮板输送机布置形态检测方法的研究[J]. 煤炭技术,2022,41(12):205-208.

    LU Chungui,SONG Danyang,SONG Jiancheng,et al. Research on straightness detection method of scraper conveyor based on strapdown inertial navigation[J]. Coal Technology,2022,41(12):205-208.

    [20] 阳兆哲,李跃忠,吴光文. 基于无迹卡尔曼滤波和小波分析的IMU传感器去噪技术研究[J]. 现代电子技术,2024,47(5):53-59.

    YANG Zhaozhe,LI Yuezhong,WU Guangwen. IMU sensor denoising based on unscented Kalman filter and wavelet analysis[J]. Modern Electronics Technique,2024,47(5):53-59.

    [21] 吴越. 超前液压支架姿态监测技术研究[D]. 徐州:中国矿业大学,2021.

    WU Yue. Research on attitude monitoring technology of advanced hydraulic support[D]. Xuzhou:China University of Mining and Technology,2021.

图(7)  /  表(1)
计量
  • 文章访问数:  29
  • HTML全文浏览量:  13
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-13
  • 修回日期:  2025-04-19
  • 网络出版日期:  2025-04-08
  • 刊出日期:  2025-04-14

目录

/

返回文章
返回