Precise perception method for position and posture of hydraulic supports based on multi-sensor fusion
-
摘要:
为精确感知扰动环境下液压支架位姿信息,提出了一种基于多传感器融合的液压支架位姿精确感知方法。首先,在液压支架顶梁、掩护梁、后连杆和底座4个构件上部署九轴姿态传感器,利用其陀螺仪、加速度计和磁力计分别解算出其所在构件的横滚角、俯仰角和偏航角等位姿数据;然后,通过无迹卡尔曼滤波(UKF)算法和梯度下降(IGD)算法(IGD−UKF算法)对位姿数据进行滤波处理,降低扰动因素对位姿数据的干扰;最后,采用自适应加权融合算法对滤波处理后的液压支架顶梁和底座的偏航角和横滚角数据进行融合处理,消除外界振动、噪声等因素引起的液压支架顶梁和底座传感器数据误差。对施加扰动下液压支架顶梁低头和抬头、底座低头和抬头、液压支架左倾和右倾、液压支架左偏和右偏等工况下顶梁、掩护梁、后连杆和底座的位姿进行感知实验,结果表明:经IGD−UKF算法处理后的数据曲线波动趋于平缓,在抑制振荡、减小振幅上的效果明显;液压支架偏航角误差为0.001 8~0.025 1°,平均绝对误差为0.004 8°,横滚角误差为0.001 4~0.028 1°,平均绝对误差为0.004 7°,实现了扰动环境下液压支架位姿的精确感知。
Abstract:This study aims to accurately perceive the position and posture information of hydraulic supports in a disturbed environment. To address this, a precise perception method for the position and posture of hydraulic supports based on multi-sensor fusion was proposed. Firstly, nine-axis attitude sensors were deployed on four components of the hydraulic support, including top beam, shield beam, rear linkage, and base, to measure roll, pitch, and yaw angles using gyroscopes, accelerometers, and magnetometers. Then, the position and posture data was filtered using the Unscented Kalman Filter (UKF) algorithm and Improved Gradient Descent (IGD) algorithm (IGD-UKF algorithm), reducing interference from disturbance factors. Finally, an adaptive weighted fusion algorithm was employed to merge the filtered yaw and roll angle data of the top beam and base of hydraulic supports, eliminating data deviations caused by external vibrations, noise, and other factors. Perception experiments were conducted on the position and posture of top beam, shield beam, rear linkage, and base under various working conditions. The disturbances included the lowering and raising of top beam and base, as well as left-leaning, right-leaning, left-deviating and right-deviating of hydraulic supports. The study found that the data curves processed by the IGD-UKF algorithm exhibited smoother fluctuations, significantly suppressing oscillations and reducing amplitude. The yaw angle error of hydraulic supports ranged from 0.001 8° to 0.025 1°, with an average absolute error of 0.004 8°. The roll angle error ranged from 0.001 4° to 0.028 1°, with an average absolute error of 0.004 7°. The results indicate that the precise perception of the position and posture of hydraulic supports in a disturbed environment is achieved.
-
-
表 1 自适应加权融合算法融合位姿数据误差结果
Table 1 Error results of position and posture data fused by adaptive weighted fusion algorithm
(°) 液压支架姿态角 最小误差 最大误差 平均绝对误差 偏航角 0.001 8 0.025 1 0.004 8 横滚角 0.001 4 0.028 1 0.004 7 -
[1] 王国法,徐亚军,张金虎,等. 煤矿智能化开采新进展[J]. 煤炭科学技术,2021,49(1):1-10. WANG Guofa,XU Yajun,ZHANG Jinhu,et al. New development of intelligent mining in coal mines[J]. Coal Science and Technology,2021,49(1):1-10.
[2] 李首滨. 国产液压支架电液控制系统技术现状[J]. 煤炭科学技术,2010,38(1):53-56. LI Shoubin. Technical status of domestic electronic-hydraulic control system for hydraulic powered support[J]. Coal Science and Technology,2010,38(1):53-56.
[3] 王方田,尚俊剑,赵宾,等. 回采巷道动压区锚索强化支护机理及参数优化设计[J]. 中国矿业大学学报,2022,51(1):56-66. DOI: 10.3969/j.issn.1000-1964.2022.1.zgkydxxb202201006 WANG Fangtian,SHANG Junjian,ZHAO Bin,et al. Strengthened anchor cable support mechanism and its parameter optimization design for roadway's dynamic pressure section[J]. Journal of China University of Mining & Technology,2022,51(1):56-66. DOI: 10.3969/j.issn.1000-1964.2022.1.zgkydxxb202201006
[4] 高有进,杨艺,常亚军,等. 综采工作面智能化关键技术现状与展望[J]. 煤炭科学技术,2021,49(8):1-22. GAO Youjin,YANG Yi,CHANG Yajun,et al. Status and prospect of key technologies of intelligentization of fully-mechanized coal mining face[J]. Coal Science and Technology,2021,49(8):1-22.
[5] 庞义辉. 液压支架支护状态感知与数据处理技术[J]. 工矿自动化,2021,47(11):66-73. PANG Yihui. Support state perception and data processing technology of hydraulic support[J]. Industry and Mine Automation,2021,47(11):66-73.
[6] 郭周斌. 综采面中液压支架的状态感知与分析[J]. 能源与节能,2024(6):205-208. DOI: 10.3969/j.issn.2095-0802.2024.06.061 GUO Zhoubin. State perception and analysis of hydraulic support in fully mechanized mining face[J]. Energy and Energy Conservation,2024(6):205-208. DOI: 10.3969/j.issn.2095-0802.2024.06.061
[7] 谢明明. 矿用液压支架姿态监测技术及系统研究[J]. 江西煤炭科技,2022(4):195-197. DOI: 10.3969/j.issn.1006-2572.2022.04.062 XIE Mingming. Study on attitude monitoring technology and system of mining hydraulic support[J]. Jiangxi Coal Science & Technology,2022(4):195-197. DOI: 10.3969/j.issn.1006-2572.2022.04.062
[8] 王忠乐. 综采液压支架姿态监测及控制技术[J]. 工矿自动化,2022,48(增刊2):116-117,137. WANG Zhongle. Attitude monitoring and control technology of fully mechanized mining hydraulic support[J]. Journal of Mine Automation,2022,48(S2):116-117,137.
[9] 谢嘉成. VR环境下综采工作面“三机” 监测与动态规划方法研究[D]. 太原:太原理工大学,2018. XIE Jiacheng. Research on "three machines" monitoring and dynamic planning method of fully mechanized mining face in VR environment[D]. Taiyuan:Taiyuan University of Technology,2018.
[10] 张坤,孙政贤,刘亚,等. 基于信息融合技术的超前液压支架姿态感知方法及实验验证[J]. 煤炭学报,2023,48(增刊1):345-356. ZHANG Kun,SUN Zhengxian,LIU Ya,et al. Research and experimental verification of attitude perception method of advanced hydraulic support based on information fusion technology[J]. Journal of China Coal Society,2023,48(S1):345-356.
[11] 崔宽宽. 煤矿井下液压支架位姿监测装置[J]. 机械制造,2024,62(12):86-88. DOI: 10.3969/j.issn.1000-4998.2024.12.023 CUI Kuankuan. Coal mine underground hydraulic support position and posture monitoring device[J]. Machinery,2024,62(12):86-88. DOI: 10.3969/j.issn.1000-4998.2024.12.023
[12] CHEN Ningning,FANG Xinqiu,LIANG Minfu,et al. Research on hydraulic support attitude monitoring method merging FBG sensing technology and AdaBoost algorithm[J]. Sustainability,2023,15(3). DOI: 10.3390/su15032239.
[13] CHEN Hongyue,CHEN Hongyan,XU Yajun,et al. Research on attitude monitoring method of advanced hydraulic support based on multi-sensor fusion[J]. Measurement,2022,187. DOI: 10.1016/j.measurement.2021.110341.
[14] GAO Kuidong,XU Wenbo,ZHANG Hongyang,et al. Relative position and posture detection of hydraulic support based on particle swarm optimization[J]. IEEE Access,2020,8:200789-200811. DOI: 10.1109/ACCESS.2020.3035576
[15] 张树楠. 基于多传感器融合的液压支架位姿监测方法研究[D]. 西安:西安科技大学,2020. ZHANG Shunan. Research on pose monitoring method of hydraulic support based on multi-sensor fusion[D]. Xi'an:Xi'an University of Science and Technology,2020.
[16] 张静,李维刚,张骏虎,等. 基于卡尔曼滤波的MIMU姿态解算算法研究[J]. 计算机测量与控制,2020,28(12):233-237,242. ZHANG Jing,LI Weigang,ZHANG Junhu,et al. Investigation of MIMU attitude algorithm based on Kalman filter[J]. Computer Measurement & Control,2020,28(12):233-237,242.
[17] 张杰. 基于MEMS陀螺仪和加速度计的动态倾角传感器[J]. 机械设计与制造,2012(9):141-143. DOI: 10.3969/j.issn.1001-3997.2012.09.050 ZHANG Jie. Dynamic tilt sensor based on MEMS gyro and accelerometer[J]. Machinery Design & Manufacture,2012(9):141-143. DOI: 10.3969/j.issn.1001-3997.2012.09.050
[18] 李文宽,蔡浩原,赵晟霖,等. 六轴IMU补偿的磁力计动态稳定校准[J]. 仪表技术与传感器,2021(1):14-19. LI Wenkuan,CAI Haoyuan,ZHAO Shenglin,et al. Six-axis IMU compensated magnetometer dynamic stable calibration[J]. Instrument Technique and Sensor,2021(1):14-19.
[19] 卢春贵,宋单阳,宋建成,等. 基于捷联惯导的刮板输送机布置形态检测方法的研究[J]. 煤炭技术,2022,41(12):205-208. LU Chungui,SONG Danyang,SONG Jiancheng,et al. Research on straightness detection method of scraper conveyor based on strapdown inertial navigation[J]. Coal Technology,2022,41(12):205-208.
[20] 阳兆哲,李跃忠,吴光文. 基于无迹卡尔曼滤波和小波分析的IMU传感器去噪技术研究[J]. 现代电子技术,2024,47(5):53-59. YANG Zhaozhe,LI Yuezhong,WU Guangwen. IMU sensor denoising based on unscented Kalman filter and wavelet analysis[J]. Modern Electronics Technique,2024,47(5):53-59.
[21] 吴越. 超前液压支架姿态监测技术研究[D]. 徐州:中国矿业大学,2021. WU Yue. Research on attitude monitoring technology of advanced hydraulic support[D]. Xuzhou:China University of Mining and Technology,2021.
-
期刊类型引用(0)
其他类型引用(4)