Review on idler fault diagnosis and coordinated control in belt conveyors
-
摘要:
托辊作为带式输送机的关键部件,其故障频发严重影响煤矿生产效率与安全。目前国内外在托辊故障诊断技术和带式输送机管理控制策略方面开展了广泛研究,然而尚未形成一套被广泛认可且行之有效的监测与管控手段。通过分析托辊故障的类型及机理,指出井下带式输送机托辊故障诊断的特殊性及面临的挑战。梳理了托辊故障诊断技术及托辊故障后协同管控的研究现状:在故障状态感知技术方面,探讨了振动、声音、温度及图像信号感知技术的原理与应用;在数据处理及特征提取方面,探讨了各类信号的处理方法及特征提取策略;在故障识别方法方面,探讨了从传统方法到机器学习、深度学习及多源信息融合的托辊故障识别方法的技术演进过程;在托辊故障后协同管控方面,探讨了目前面临控制系统复杂性高、不同控制策略之间的兼容性差、状态监测数据的准确性和实时性难以保证等问题。基于上述研究,指出托辊故障诊断技术虽取得一定进展,但仍存在故障辨识度不高、覆盖范围有限、检测物理量单一、无法对故障进行分类及判断程度、未能评估故障可能引发的风险,以及缺乏全面的管控策略等问题,提出托辊故障诊断技术发展方向:从单一监测向多维度融合监测发展、从稀疏覆盖向密集全面覆盖迈进、从表象诊断向本质分析探究故障演化规律、从被动应对到主动预防的转变并推动从局部管控向全局协同管控的升级。
Abstract:As a critical component of belt conveyors, idlers are prone to frequent failures, significantly impacting the efficiency and safety of coal mine operations. Extensive research has been conducted worldwide on idler fault diagnosis techniques and coordinated control strategies for belt conveyors. However, a universally accepted and effective monitoring and control framework is still lacking. This paper provides a comprehensive review of idler fault types and failure mechanisms, emphasizing the unique challenges associated with diagnosing faults in underground belt conveyors. The current state of research on idler fault diagnosis and post-failure coordinated control is systematically analyzed in four key areas: ① Fault State Perception Technologies: The principles and applications of vibration, acoustic, thermal, and image-based sensing technologies are discussed. ② Data Processing and Feature Extraction: Various signal processing methods and feature extraction strategies are examined. ③ Fault Identification Methods: The evolution of idler fault identification techniques is reviewed, ranging from traditional approaches to advanced machine learning, deep learning, and multi-source information fusion. ④ Post-Failure Coordinated Control: Challenges such as the high complexity of control systems, poor compatibility between different control strategies, and difficulties in ensuring the accuracy and real-time performance of condition monitoring data are highlighted. Despite notable advancements in idler fault diagnosis technologies, several challenges persist, including low fault identification accuracy, limited monitoring coverage, single-parameter detection, and the inability to classify faults or assess their severity. Furthermore, there is inadequate evaluation of potential fault-induced risks and a lack of comprehensive management strategies. Based on these findings, future research directions are proposed: advancing from single-parameter monitoring to multi-dimensional integrated monitoring, transitioning from sparse coverage to dense and comprehensive surveillance, shifting from surface-level diagnosis to in-depth analysis of fault evolution mechanisms, progressing from reactive responses to proactive fault prevention, and promoting the transformation from localized management to global coordinated control.
-
0. 引言
近年来,随着采煤技术的更新迭代,原煤产量迅速增加。为了适应增长的原煤入选量,作为配套的选煤厂需进行升级改造[1]。浮选智能控制是选煤厂智能化的重要内容,近年来,浮选尾煤灰分仪、浮选精煤灰分仪的引入解决了浮选灰分耗时长、测量难等问题,但是如何获取浮选浓度、流量、浮选精煤和尾煤灰分在线检测仪表的信息,实现智能控制,是当前研究的热点和需要突破的“卡脖子”难题[2]。
在浮选过程控制建模的早期研究中,文献[3]通过建立煤泥浮选速率常数、煤泥密度及药剂添加量之间的数学模型,实现了对实际生产结果的初步预测。文献[4]在实验室条件下开发了浮选机理模型,实现了对浮选指标更精准的控制。文献[5]基于质量守恒原理建立了煤泥浮选全流程仿真模型,较好地反映了浮选过程的动态特性。然而,这类模型基于单一浮选槽构建,当浮选槽数量变化时,其预测精度会显著下降。此外,由于浮选过程具有非线性强、大滞后和参数扰动频繁等特性,使得机理建模过程复杂、耗时,难以适应工业现场的控制需求。
针对机理模型在现场应用中的局限,系统辨识方法作为一种“数据驱动”的建模技术应运而生。该方法无需依赖复杂的物理机制推导,能够直接从采集到的过程数据中提取动态特性,从而有效简化传统的建模流程,提高模型在实际工况下的适应性。文献[6]利用Matlab系统辨识工具箱对浮选过程进行了建模,通过将三输入多输出系统拆分为2个三输入单输出子系统,实现了对浮选过程动态行为较为准确的控制。文献[7]基于辨识黑箱模型与BP神经网络构建了PID控制器,并在Simulink平台上完成了浮选过程的动态建模与控制仿真。但传统辨识方法在处理时序信息方面存在一定不足,难以准确捕捉浮选过程中的时间依赖关系,且PID控制在应对多输入多输出(Multiple-Input Multiple-Output,MIMO)系统耦合特性时存在一定误差[8]。
针对上述问题,本文将鲸鱼优化算法(Whale Optimization Algorithm,WOA)与门控循环单元(Gated Recurrent Unit,GRU)有机结合,构建基于WOA−GRU的模型预测控制(Model Predictive Control,MPC)。首先,使用系统辨识方法进行建模,然后,使用具备强时序建模能力的GRU对浮选过程进行动态辨识[9],并结合WOA提升参数寻优效率[10],最后使用MPC来实现控制。
1. 基于WOA−GRU的非线性系统辨识
1.1 GRU
GRU模型是在循环神经网络(Recurrent Neural Network,RNN)的基础上,借鉴长短时记忆网络(Long Short-Term Memory,LSTM)[11]思想发展而来的改进模型[12]。GRU主要由重置门和更新门组成,如图1所示。重置门rt用于控制上一时刻隐藏状态对当前输入的影响,从而帮助神经元遗忘与当前预测无关的信息。更新门zt则用于控制当前单元对上一时刻隐藏状态的保留程度,更新门的值越大,表示保留的有效信息越多,有助于长时依赖特征的学习。
GRU各组成部分的内部运算过程可表示为
$$ {{\textit{z}}}_t=\sigma \left({{\boldsymbol{W}}}_{{\textit{z}}}{x}_{t}+{{\boldsymbol{U}}}_{{\textit{z}}}{h}_{t-1}\right) $$ (1) $$ {r}_t=\sigma \left({{\boldsymbol{W}}}_{r}{x}_{t}+{{\boldsymbol{U}}}_{r}{h}_{t-1}\right) $$ (2) $$ {\tilde {h}}_t={\mathrm{tanh}}\left({{\boldsymbol{W}}}_{h}{x}_{t}+{{\boldsymbol{U}}}_{h}{r}_{t} {h}_{t-1}\right) $$ (3) $$ {g}_{t}={{\textit{z}}}_{t} \tilde {h}+\left(1-{{\textit{z}}}\right) { {g}}_{t-1} $$ (4) 式中:$ \sigma $为激活函数,表示神经元的激活率;$ {{\boldsymbol{W}}}_{{\textit{z}}} $,$ {{\boldsymbol{U}}}_{{\textit{z}}} $,$ {{\boldsymbol{W}}}_{r} $,$ {{\boldsymbol{U}}}_{r} $,$ {{\boldsymbol{W}}}_{h} $,$ {{\boldsymbol{U}}}_{h} $分别为更新门、重置门和候选隐藏状态的上一时刻输出及当前时刻输入所对应的权重矩阵;$ {x}_{t} $为$ t $时刻的输入;$ {\tilde {h}}_t $为候选隐藏状态;$ {g}_{t} $为$ t $时刻的输出。
1.2 WOA−GRU算法流程
WOA是通过模拟座头鲸在觅食过程中收缩包围猎物和螺旋式更新猎物位置的行为机制,进而实现全局优化搜索的全局算法[13]。WOA适合用来调节GRU中的参数,比如探索阶段和捕食阶段的参数,可以帮助调整正则化参数、Dropout比例等,减少模型在训练集上的过拟合现象[14]。而通过超参数优化自动搜索最佳学习率和最合适的迭代次数,可以获得更好的收敛效果[15]。
1) 收缩包围机制。座头鲸在捕食过程中会识别并包围猎物的位置。WOA假设当前种群中的最优候选解代表目标猎物或接近最优解的个体,如果有更优解则在每次迭代过程中根据更优个体不断更新位置[16]。这一行为可表示为
$$ {{\boldsymbol{D}}}=\left|{{\boldsymbol{C}}}\;{{{\boldsymbol{X}}}}^{*}\left(t\right)-{{\boldsymbol{X}}}\left(t\right)\right| $$ (5) $$ {{\boldsymbol{X}}}(t+1)={{{\boldsymbol{X}}}}^{*} \left(t\right)-{{\boldsymbol{A}}} {{\boldsymbol{D}}} $$ (6) $$ {{\boldsymbol{A}}}=2{{\boldsymbol{a}}} {{r}}_{1}-{{\boldsymbol{a}}} $$ (7) $$ {{\boldsymbol{C}}}=2 {{{\boldsymbol{r}}}}_{2} $$ (8) $$ {{\boldsymbol{a}}}=2-\frac{2t}{{T}_{{\mathrm{max}}}} $$ (9) 式中:$ {{\boldsymbol{D}}} $为鲸鱼的最优位置与当前位置的绝对差值; $ {{\boldsymbol{A}}} $和$ {{\boldsymbol{C}}} $为系数向量;$ {{{\boldsymbol{X}}}}^{*}\left(t\right) $为当前鲸鱼的最优位置;$ {{\boldsymbol{X}}}\left(t\right) $为当前鲸鱼位置;$ {{\boldsymbol{a}}} $为控制参数,随着迭代次数的增加,$ {|a|} $从2线性减小到0;$ {{{\boldsymbol{r}}}}_{1} $和$ {{{\boldsymbol{r}}}}_{2} $为随机向量,$\left|r_1\right| \in[0,1],\left|r_2\right| \in[0,1] $;$ {T}_{{\mathrm{max}}} $为最大迭代次数。
2) 螺旋更新位置。座头鲸包围猎物后,会以螺旋状运动方式捕获猎物,其数学模型为
$$ \boldsymbol{X}(t+1)=\boldsymbol{M}\exp(cl)\cos(2{\text{π}} l)+\boldsymbol{X}^*(\mathrm{t}) $$ (10) 式中:$ {{\boldsymbol{M}}} $为鲸鱼和猎物之间的距离;$ c $为常数,用来定义对数螺线的形状;$ l $为[−1,1]的随机数。
鲸鱼的收缩包围机制和螺旋位置是一种同步行为[17],假定2种模式的概率为$ {P} $($ {P} $=0.5),则鲸鱼的位置更新方程为
$$ {{\boldsymbol{X}}}(t+1)=\left\{\begin{array}{ll}{{{\boldsymbol{X}}}}^{*}\left(t\right)-{{\boldsymbol{A}}} {{\boldsymbol{D}}}&{P} < 0.5\\ {{\boldsymbol{M}}} \text{exp(}cl) {{\mathrm{cos}}}(2{\text{π}} l)+{{{\boldsymbol{X}}}}^{*} \left({\mathrm{t}}\right)&{P}\geqslant0.5\end{array}\right. $$ (11) WOA−GRU算法流程如图2所示,其中$ |A| $是系数向量$ \boldsymbol{A} $的模,表示鲸鱼靠近猎物(即最优解)的程度。首先,初始化WOA的各项参数并设置GRU的初始参数;其次,基于当前参数组合,以GRU在验证集上的预测误差作为适应度,误差越小,个体适应度越高,根据适应度最优的个体确定当前最优解;然后,通过螺旋更新鲸鱼个体的位置并持续随机搜索猎物来优化搜索,直至达到最大迭代次数或者满足收敛条件后获得最优解;最后,根据最优个体确定GRU的最优参数组合,完成模型训练与测试[18],并进一步分析不同GRU参数配置对尾煤灰分识别效果的影响。
2. 数据预处理及分析
通过系统辨识方法可以将现场数据拟合为具有对应输入和扰动的黑箱模型,进而实现对灰分输出的控制仿真,该仿真可近似替代传统浮选模型的控制[19]。由于系统辨识工具箱的特性,选取的变量均为数字变量,不涉及泡沫等图像特征。
在四川广旺能源发展(集团)有限责任公司代池坝选煤厂生产现场进行数据采样(每3 s取样1次,取样1个月的生产数据),收集了包含不同操作条件下的控制变量、扰动变量和输出变量的数据。在1个月的生产过程中,充气量仅调节了4次,尾矿闸板高度调节6次,数据太少没有纳入考虑范围,最终特征变量确定为进矿流量、进矿浓度、起泡剂和捕收剂的添加量,以及AI矿浆灰分仪显示的灰分。
为直观说明干煤泥量与灰分波动情况的相关性,截取部分未进行处理的原始数据进行分析,如图3所示。可看出当干煤泥量波动5%~10%时,会导致灰分数据异常,但对生产影响较小;当波动超过10%时,则会对生产产生较大影响(该波动范围被视为警戒线)。灰分波动<5%时为正常生产波动,波动5%~10%时,由于灰分波动较难控制,短时波动通常视为正常,只有在波动持续时间较长时才会进行人工干预。说明干煤泥量波动是导致灰分波动的主要影响因素,二者在剧烈波动时有一定的滞后相关性。为了提高浮选产品质量的稳定性,需对干煤泥量波动进行有效控制。
对数据进行预处理及时序分析,如图4所示。
由于数据的收集范围包括整个生产周期,所以需要对原始数据(包括生产数据和非生产数据)进行分段处理,通过异常值处理去除非生产数据及生产数据中的异常值,得到25段生产数据。为了保持数据的连续性,对25段生产数据进行线性插值,填补数据的空缺部分,随后对该数据进行平滑处理。
为分析浮选过程各变量与灰分之间的动态滞后关系,对平滑处理后的数据进行时间序列对齐与滞后相关性分析。假定灰分存在1~20 min的不同提前量,分别对每个提前量进行数据调整。以1 min提前量为例,将原1 min的进矿流量和浓度数据与1 min后的灰分数据进行对齐,形成新的样本对。因时间对齐导致灰分数据存在空缺,需将无效数据删除。按照相同的方法,依次完成1~20 min不同提前量下的数据对齐处理。将对齐后的数据进行归一化处理,采用滑动时间窗口方法将数据切分为多个样本切片并进行堆叠。对于每个切片样本,计算各输入特征与灰分之间的Spearman相关系数,如图5所示,以获得不同提前量下各特征变量与灰分之间的时间滞后相关性结果,为后续模型建立和特征选择提供依据。由图5可看出,进矿流量和浓度对于灰分的影响滞后时间分别为5 min和8 min左右,干煤泥量滞后时间接近8 min,捕收剂和起泡剂添加量对灰分的滞后时间在10~12 min。
3. 非线性系统辨识控制仿真
数据预处理及分析完成后,采用传统非线性NARX模型和WOA−GRU模型进行辨识,拟合曲线如图6、图7所示。NARX模型的拟合曲线准确率较低,为37.62%,这是因为灰分曲线由一系列离散数据点构成,且工具箱自带的函数在时间滞后处理方面存在局限,难以捕捉长期依赖关系,导致整体拟合度较低[20]。WOA−GRU模型的拟合曲线准确率达89.46%,较NARX模型提高了51.84%,且在捕捉灰分离散特征方面表现出更高的准确度。
为实现对浮选过程灰分波动的精准控制,分别基于NARX模型和WOA−GRU模型构建了2套MPC系统,并在Simulink平台搭建了完整的仿真环境。MPC控制器的关键参数:采样时间为3 s,预测时域长度为20步,控制时域长度为9步。MPC系统原理如图8所示,仿真模型结构如图9所示。
图9中,Sheet2模块用于导入选煤厂的生产数据集。进矿流量d1和进矿浓度d2作为扰动变量,从md(可测量干扰信号)端口输入MPC控制器及其辨识模型。辨识模型通过fcn模块实现,该模块嵌入了NARX模型与WOA−GRU模型,用以在每个控制周期内预测未来灰分y的变化趋势,预测结果y会反馈回MPC控制器的mo(当前可测量的输出信号)端口。设定灰分值由ref(参考信号)端口输入。MPC控制器根据预测灰分与设定参考灰分之间的偏差,实时优化捕收剂与起泡剂的添加量u1,u2,并将优化结果反馈至辨识模型,形成闭环控制。为减轻Matlab仿真负荷,提高运行效率,仿真过程中对数据进行了筛选处理,将仿真步长设定为1 s(对应实际工况1 min),总仿真时间为20 s,对应模拟20 min的浮选生产过程,WOA−GRU模型和NARX模型的仿真结果分别如图10、图11所示。从图10可看出,MPC系统在运行初期存在一定幅度的灰分波动,在8~10 min时波动逐渐减小并趋于稳定,且稳定时间与前期滞后相关性分析结果一致,与实际生产现场的调节经验高度吻合。这表明灰分波动被有效抑制,相比控制前状态,浮选产品灰分波动幅度明显减小。从图11可看出,对于NARX模型,MPC控制器同样可以成功实现控制,但是当灰分设定值为73%时,所控制的灰分曲线在67%附近小幅不规则振荡,误差约为8%,表明MPC控制器对波动具有较好的抑制能力,但其未能精确调节到设定灰分值。这是因为NARX模型无法进行时序系统的辨识,参考数据与模拟数据之间存在的时间延迟带来了不可避免的误差,导致预测的灰分值低于实际灰分值,当药剂量正确添加时,得到的灰分值也低于设定值。
4. 实际运行试验
为验证MPC控制器在工业现场的适用性,进行了现场运行试验。现场浮选机型号为XJM−S,流量计型号为FE20−400,浓度计型号为SPID−X10,灰分仪为江苏仕能AI矿浆灰分仪,药剂添加使用隔膜泵,工控机型号为Siemens IPC427C−i7。
将已经过Simulink仿真验证有效性的WOA−GRU模型转化为C语言,在QT中部署,并实现实时读取数据和控制变频器[21]。同时,开发了相应的操作界面(图12),该界面可自主选择数据采集总时长与采样周期,并可在NARX模型和WOA−GRU模型之间切换,作为MPC预测模型[22-24]。
运行结果如图13所示,当进矿流量和进矿浓度发生剧烈波动时,MPC系统能够及时调节起泡剂和捕收剂的添加量,将灰分波动控制在合理范围内。
为进一步评估控制效果,对关键工艺参数波动特性进行了统计,控制前的统计数据见表1,控制后统计数据见表2。可看出控制后灰分波动幅度位于5%~10%的数据占比减少了10.8%,大于10% 的数据占比减少了3.9%。说明MPC控制器在抑制因煤泥量异常波动引起的灰分波动方面具有良好效果,使生产过程更加平稳。
表 1 控制前的波动统计Table 1. Fluctuation statistics before control变量(基准值) 不同波动范围下的数据占比/% 5%~10% 大于10% 干煤泥量(72 000 kg/m3) 36.3 13.9 灰分(73%) 46.7 24.3 表 2 控制后的波动统计Table 2. Fluctuation statistics after control变量(基准值) 不同波动范围下的数据占比/% 5%~10% 大于10% 干煤泥量(72 000 kg/m3) 35.7 13.2 灰分(73%) 35.9 20.4 在现场试运行的1个月内,以原矿量(干煤泥量)作为计算基础,统计每天的干煤泥量和药剂消耗总量,汇总计算月平均量,计算出平均药剂消耗为0.091 8 kg/t,比平时(前8个月)的平均药剂消耗(0.095 6 kg/t)节省约4%,说明基于WOA−GRU模型的预测控制满足选煤厂智能化建设改进要求,可以提高选煤厂经济效益。
5. 结论
1) 针对浮选过程进行数据预处理,以处理滞后难题,采用基于WOA−GRU和NARX的模型对浮选现场进行了辨识建模,结果表明,WOA−GRU模型拟合效果较NARX模型提升了51.84%。
2) 现场试运行期间的灰分数据统计显示,基于WOA−GRU模型的MPC系统使灰分波动明显减小,灰分波动范围在5%~10%区间减少了10.8%,大于10%的减少了3.9%,控制效果更加稳定,平均药剂消耗节省约4%。
-
表 1 矿用带式输送机托辊故障诱因、现象、显著表征物理量及可能造成的影响
Table 1 Causes, phenomena, significant physical characteristics, and potential impacts of idler faults in mining belt conveyors
诱因 现象 显著表征
物理量故障可能
造成的影响筒体破损 摩擦阻力增大 温度、图像 不停机可能造成胶带损坏,停机可能造成外因火灾 托辊轴承失效 内圈故障 固定频率的微弱冲击 振动、声音 不停机可能造成胶带跑偏 外圈故障 滚珠故障 保持架故障 密封性不足 卡死 温度 筒体或主轴变形 频率不固定的较强烈冲击、卡死 振动、声音、温度、图像 不停机可能造成胶带损伤或胶带跑偏 -
[1] 佟哲. 矿用带式输送机托辊远程故障诊断方法研究[D]. 徐州:中国矿业大学,2020. TONG Zhe. Research on remote fault diagnosis method of idler of mine belt conveyor[D]. Xuzhou:China University of Mining and Technology,2020.
[2] 邱明权. 矿用带式输送机托辊健康监测方法研究[D]. 徐州:中国矿业大学,2018. QIU Mingquan. Study on health monitoring method of idler of mine belt conveyor[D]. Xuzhou:China University of Mining and Technology,2018.
[3] 侯长波. 干涉型光纤振动传感信号解调与识别技术研究[D]. 哈尔滨:哈尔滨工程大学,2021. HOU Changbo. Research on demodulation and identification technology of interferometric optical fiber vibration sensing signal[D]. Harbin:Harbin Engineering University,2021.
[4] 贾振安,赵显锋,高宏,等. 光纤布拉格光栅振动传感器研究[J]. 红外,2020,41(7):18-24. JIA Zhen'an,ZHAO Xianfeng,GAO Hong,et al. Research on fiber bragg grating vibration sensor[J]. Infrared,2020,41(7):18-24.
[5] 张娟,张磊,程文华,等. 一种高灵敏度声表面波振动传感器的设计研究[J]. 仪器仪表学报,2023,44(10):100-111. ZHANG Juan,ZHANG Lei,CHENG Wenhua,et al. Research on the design of a high-sensitivity surface acoustic wave vibration sensor[J]. Chinese Journal of Scientific Instrument,2023,44(10):100-111.
[6] 杜富瑞,陈国良,谷宝平,等. 基于WSN的多金属矿井下人机定位系统设计[J]. 金属矿山,2022(12):165-169. DU Furui,CHEN Guoliang,GU Baoping,et al. Design of personnel and vehicle positioning system in polymetallic mine based on WSN[J]. Metal Mine,2022(12):165-169.
[7] 夏欣. 面向无线振动传感器短时振动信号的分析与诊断[D]. 马鞍山:安徽工业大学,2021. XIA Xin. Analysis and diagnosis of short-term vibration signal for wireless vibration sensor[D]. Maanshan:Anhui University of Technology,2021.
[8] 王森,郭述文,刘秉坤. MEMS光纤振动传感器在大型电机设备异常监测场景的应用研究[J]. 中国设备工程,2024(17):172-174. DOI: 10.3969/j.issn.1671-0711.2024.17.071 WANG Sen,GUO Shuwen,LIU Bingkun. Research on application of MEMS optical fiber vibration sensor in abnormal monitoring scene of large motor equipment[J]. China Plant Engineering,2024(17):172-174. DOI: 10.3969/j.issn.1671-0711.2024.17.071
[9] 井庆贺,张启良,王增仁,等. 带式输送机中间段托辊故障检测方法研究[J]. 中国安全科学学报,2023,33(增刊2):41-48. JING Qinghe,ZHANG Qiliang,WANG Zengren,et al. Research on fault detection method for middle section idler of belt conveyor[J]. China Safety Science Journal,2023,33(S2):41-48.
[10] 郭帅. 带式输送机托辊轴承分布式状态监测系统研制[D]. 淮南:安徽理工大学,2022. GUO Shuai. Development of distributed condition monitoring system for roller bearing of belt conveyor[D]. Huainan:Anhui University of Science & Technology,2022.
[11] 张中盘,张明,时瑛,等. 皮带输送机托辊故障声源定位方法[J]. 噪声与振动控制,2024,44(1):142-147. ZHANG Zhongpan,ZHANG Ming,SHI Ying,et al. Sound source localization method for belt conveyor idler faults[J]. Noise and Vibration Control,2024,44(1):142-147.
[12] 武国平. 带式输送机托辊故障检测方法[J]. 工矿自动化,2023,49(2):149-156. WU Guoping. Fault detection method for belt conveyor idler[J]. Journal of Mine Automation,2023,49(2):149-156.
[13] 伍鹏. 基于麦克风阵列的带式输送机机组智能预警技术研究[D]. 北京:北京化工大学,2023. WU Peng. Research on intelligent early warning technology of belt conveyor unit based on microphone array[D]. Beijing:Beijing University of Chemical Technology,2023.
[14] 吴文臻,程继明,李标. 矿用带式输送机托辊音频故障诊断方法[J]. 工矿自动化,2022,48(9):25-32. WU Wenzhen,CHENG Jiming,LI Biao. Audio fault diagnosis method of mine belt conveyor roller[J]. Journal of Mine Automation,2022,48(9):25-32.
[15] 赵初峰. 基于音频分析技术的矿井带式输送机托辊故障诊断系统研究[J]. 煤炭技术,2023,42(2):200-202. ZHAO Chufeng. Research on fault diagnosis system of supporting roller of mine belt conveyor based on audio analysis technology[J]. Coal Technology,2023,42(2):200-202.
[16] 赵新哲,杨金刚,任磊. 带式输送机托辊故障检测方法研究[J]. 山东煤炭科技,2023,41(4):135-137. ZHAO Xinzhe,YANG Jingang,REN Lei. Research on fault detection method of belt conveyor support roller[J]. Shandong Coal Science and Technology,2023,41(4):135-137.
[17] 朱振. 带式输送机托辊运行状态在线巡检机器人关键技术研究[D]. 阜新:辽宁工程技术大学,2020. ZHU Zhen. Research on key technologies of on-line inspection robot for running status of belt conveyor roller[D]. Fuxin:Liaoning Technical University,2020.
[18] 孙亮. 基于自供能无线传感器网络的托辊监测系统研究[D]. 徐州:中国矿业大学,2022. SUN Liang. Research on roller monitoring system based on self-powered wireless sensor network[D]. Xuzhou:China University of Mining and Technology,2022.
[19] 宋克. TBM连续皮带机托辊巡检机器人系统设计与实现[D]. 石家庄:石家庄铁道大学,2023. SONG Ke. Design and implementation of inspection robot system for roller of TBM continuous belt conveyor[D]. Shijiazhuang:Shijiazhuang Tiedao University,2023.
[20] 胡长斌. 基于视频数据的托辊异常检测研究[D]. 西安:西安科技大学,2021. HU Changbin. Research on roller anomaly detection based on video data[D]. Xi'an:Xi'an University of Science and Technology,2021.
[21] 吉日格勒,柳尧,尚书宏. 带式输送机托辊故障算法研究[J]. 中国安全科学学报,2023,33(增刊2):195-201. JIRI Gele,LIU Yao,SHANG Shuhong. Research on fault detection algorithm of rollers of coal conveyer belts[J]. China Safety Science Journal,2023,33(S2):195-201.
[22] 戴忠林. 带式输送机托辊轴承故障智能诊断与寿命预测研究[D]. 阜新:辽宁工程技术大学,2022. DAI Zhonglin. Research on intelligent diagnosis and life prediction of roller bearing fault of belt conveyor[D]. Fuxin:Liaoning Technical University,2022.
[23] 李涛. 带式输送机运行状态智能监控系统研究[D]. 西安:西安建筑科技大学,2020. LI Tao. Research on intelligent monitoring system of belt conveyor running state[D]. Xi'an:Xi'an University of Architecture and Technology,2020.
[24] 周毅炜. 光纤分布式传感系统在胶带机故障信号检测中的应用研究[D]. 成都:电子科技大学,2023. ZHOU Yiwei. Research on application of optical fiber distributed sensing system in fault signal detection of belt conveyor[D]. Chengdu:University of Electronic Science and Technology of China,2023.
[25] 彭程程. 基于二阶瞬态提取变换的滚动轴承故障特征提取方法研究[J]. 机电工程,2021,38(10):1246-1252. PENG Chengcheng. Fault feature extraction method for rolling bearing based on STET[J]. Journal of Mechanical & Electrical Engineering,2021,38(10):1246-1252.
[26] 李勇. 基于数据驱动的带式输送机轴承故障诊断技术研究[D]. 徐州:中国矿业大学,2021. LI Yong. Research on fault diagnosis technology of belt conveyor bearing based on data driving[D]. Xuzhou:China University of Mining and Technology,2021.
[27] 仪继超. 基于分布式光纤传感系统的带式传输机故障监测技术研究[D]. 济南:齐鲁工业大学,2023. YI Jichao. Research on fault monitoring technology of belt conveyor based on distributed optical fiber sensing system[D]. Jinan:Qilu University of Technology,2023.
[28] 曹贯强. 带式输送机托辊故障检测方法[J]. 工矿自动化,2020,46(6):81-86. CAO Guanqiang. Fault detection method for belt conveyor roller[J]. Industry and Mine Automation,2020,46(6):81-86.
[29] 贺志军,李军霞,刘少伟,等. CEEMD−VMD与参数优化SVM结合的托辊轴承故障诊断[J]. 机械科学与技术,2024,43(3):402-408. HE Zhijun,LI Junxia,LIU Shaowei,et al. Roller bearing fault diagnosis combined CEEMD-VMD and parameter optimization SVM[J]. Mechanical Science and Technology for Aerospace Engineering,2024,43(3):402-408.
[30] 邱园园. 多种时频图联合的托辊故障诊断方法研究[D]. 银川:宁夏大学,2022. QIU Yuanyuan. Research on fault diagnosis method of idler combined with multiple time-frequency graphs[D]. Yinchuan:Ningxia University,2022.
[31] 李羽蒙,樊红. 基于MFCC特征与卷积神经网络的托辊故障诊断方法[J]. 武汉大学学报(工学版),2024,57(5):691-698. LI Yumeng,FAN Hong. A fault diagnosis method of roller based on MFCC features and convolutional neural network[J]. Engineering Journal of Wuhan University,2024,57(5):691-698.
[32] 郭洁,井庆贺,闫寿庆,等,基于MFCC声音特征信号提取的托辊故障诊断[J]. 中国安全科学学报,2023,33(增刊2):116-121. GUO Jie,JING Qinghe,YAN Shouqing,et al. Roller fault diagnosis based on MFCC sound feature signal extraction[J]. China Safety Science Journal,2023,33(S2):116-121.
[33] 伊鑫,杨明锦,杨林顺,等. 基于KNN与SVM两级综合健康指标的托辊故障诊断方法[J]. 选煤技术,2020,48(5):94-102. YI Xin,YANG Mingjin,YANG Linshun,et al. The KNN and SVM-based 2-level comprehensive health indicators diagnosis method for detecting the failure of belt conveyor’s idlers[J]. Coal Preparation Technology,2020,48(5):94-102.
[34] 陶瀚宇,陈换过,彭程程,等. 基于MFCC−IMFCC混合倒谱的托辊轴承故障诊断[J]. 机电工程,2024,41(7):1215-1222. TAO Hanyu,CHEN Huanguo,PENG Chengcheng,et al. Fault diagnosis of idler bearings based on MFCC-IMFCC hybrid cepstral coefficients[J]. Journal of Mechanical & Electrical Engineering,2024,41(7):1215-1222.
[35] 张启虎. 基于PCHIP−EWT声音处理技术的带式输送机故障诊断系统研究[D]. 曲阜:曲阜师范大学,2024. ZHANG Qihu. Research on fault diagnosis system of belt conveyor based on PCHIP-EWT sound processing technology[D]. Qufu:Qufu Normal University,2024.
[36] 刘春,张明,董帆,等. 基于包络谱峭度的输送皮带托辊故障特征提取[J]. 机电信息,2023(7):59-63. LIU Chun,ZHANG Ming,DONG Fan,et al. Extraction of fault characteristics of conveyor belt roller based on envelope spectrum[J]. Mechanical and Electrical Information,2023(7):59-63.
[37] 贺志军. 基于机器学习算法的带式输送机托辊故障诊断方法研究[D]. 太原:太原理工大学,2023. HE Zhijun. Research on fault diagnosis method of belt conveyor idler based on machine learning algorithm[D]. Taiyuan:Taiyuan University of Technology,2023.
[38] 缪江华. 基于卷积神经网络的带式输送机托辊故障诊断[J]. 煤矿机械,2024,45(6):182-185. MIAO Jianghua. Fault diagnosis of belt conveyor roller based on convolutional neural network[J]. Coal Mine Machinery,2024,45(6):182-185.
[39] 韩信. 基于声信号的托辊轴承故障诊断方法研究[D]. 淮南:安徽理工大学,2024. HAN Xin. Research on fault diagnosis method of idler bearing based on acoustic signal[D]. Huainan:Anhui University of Science & Technology,2024.
[40] 刘玉良. 光纤测温中温度解调与去噪方法的研究[D]. 淮南:安徽理工大学,2010. LIU Yuliang. Research on temperature demodulation and denoising method in optical fiber temperature measurement[D]. Huainan:Anhui University of Science & Technology,2010.
[41] 宁武霆,赵春菊,周宜红,等. 混凝土坝光纤测温噪声特征及降噪方法[J]. 水电能源科学,2021,39(6):73-76,80. NING Wuting,ZHAO Chunju,ZHOU Yihong,et al. Combined noise reduction model of distributed optical fiber temperature measurement data for concrete dam[J]. Water Resources and Power,2021,39(6):73-76,80.
[42] 丁厚轩. 带式输送机关键部位异常温度监测系统研究[D]. 徐州:中国矿业大学,2023. DING Houxuan. Research on abnormal temperature monitoring system of key parts of belt conveyor[D]. Xuzhou:China University of Mining and Technology,2023.
[43] 郭清华. 基于光纤测温技术的带式输送机托辊故障识别算法研究[J]. 煤矿机械,2018,39(8):157-160. GUO Qinghua. Research on roller fault identification algorithm of belt conveyor system based on fiber temperature measurement technology[J]. Coal Mine Machinery,2018,39(8):157-160.
[44] 郭清华. 基于光纤测温的托辊轴温检测及热传导模型研究[J]. 矿业安全与环保,2020,47(1):66-69,74. GUO Qinghua. Research on roller shaft temperature detection and thermal conductivity model based on optical fiber temperature measurement[J]. Mining Safety & Environmental Protection,2020,47(1):66-69,74.
[45] 王金凤. 基于多信息融合的带式输送机故障诊断研究[D]. 曲阜:曲阜师范大学,2021. WANG Jinfeng. Research on fault diagnosis of belt conveyor based on multi-information fusion[D]. Qufu:Qufu Normal University,2021.
[46] 张俊. 基于红外热成像技术的托辊故障诊断系统研究[J]. 机械研究与应用,2023,36(4):174-178. ZHANG Jun. Research on idler fault diagnosis system based on infrared thermal imaging technology[J]. Mechanical Research & Application,2023,36(4):174-178.
[47] 马宏伟,杨文娟,张旭辉. 基于红外热像的带式输送机监测与预警系统[J]. 激光与红外,2017,47(4):448-452. MA Hongwei,YANG Wenjuan,ZHANG Xuhui. Monitoring and warning system of belt conveyor based on infrared thermography[J]. Laser & Infrared,2017,47(4):448-452.
[48] 井坤. 基于红外图像处理的带式输送机故障诊断系统研究[D]. 曲阜:曲阜师范大学,2021. JING Kun. Research on fault diagnosis system of belt conveyor based on infrared image processing[D]. Qufu:Qufu Normal University,2021.
[49] 金学智. 基于红外图像的带式输送机故障预警方法研究[D]. 银川:宁夏大学,2021. JIN Xuezhi. Research on fault early warning method of belt conveyor based on infrared image[D]. Yinchuan:Ningxia University,2021.
[50] 阮顺领,阮炎康,卢才武,等. 基于红外图像的矿石传送带托辊异常检测[J]. 黄金科学技术,2023,31(1):123-132. RUAN Shunling,RUAN Yankang,LU Caiwu,et al. Detection of ore conveyer roller based on infrared image[J]. Gold Science and Technology,2023,31(1):123-132.
[51] 郭盈辉. 基于机器视觉的带式输送机托辊故障检测的研究[D]. 天津:天津工业大学,2022. GUO Yinghui. Research on fault detection of belt conveyor idler based on machine vision[D]. Tianjin:Tianjin Polytechnic University,2022.
[52] 陈岩. 带式输送机传动滚筒轴承故障智能诊断[J]. 工矿自动化,2023,49(增刊1):56-59,137. CHEN Yan. Intelligent fault diagnosis of belt conveyor drive roller bearing[J]. Journal of Mine Automation,2023,49(S1):56-59,137.
[53] 谢苗,孟庆爽,马苏宁,等. 分布式光纤传感系统托辊故障监测技术研究[J/OL]. 机械科学与技术:1-11[2024-12-06]. https://doi.org/10.13433/j.cnki.1003-8728.20240092. XIE Miao,MENG Qingshuang,MA Suning,et al. Research on fault monitoring technology for roller in distributed fiber optic sensing system[J/OL]. Mechanical Science and Technology for Aerospace Engineering :1-11[2024-12-06]. https://doi.org/10.13433/j.cnki.1003-8728.20240092.
[54] 缪江华,苑静科,王文硕. 基于堆叠稀疏自编码和谱聚类分析的带式输送机托辊故障诊断[J]. 煤矿机械,2024,45(7):163-166. MIAO Jianghua,YUAN Jingke,WANG Wenshuo. Fault diagnosis of belt conveyor roller based on stacked sparse autoencoder and spectral clustering analysis[J]. Coal Mine Machinery,2024,45(7):163-166.
[55] 梁堃,王驰. 基于分布式光纤声波传感器的带式输送机托辊故障监测方法[J]. 激光与光电子学进展,2023,60(9):276-284. LIANG Kun,WANG Chi. Roller fault monitoring of belt conveyor using distributed fiber-optic acoustic sensor[J]. Laser & Optoelectronics Progress,2023,60(9):276-284.
[56] 刘勇. 基于声信号的带式输送机托辊故障特征分析[J]. 中国安全科学学报,2023,33(增刊2):13-17. LIU Yong. Fault characteristic analysis of belt conveyor rollers based on sound signal[J]. China Safety Science Journal,2023,33(S2):13-17.
[57] 董乃吉. 基于声音信号的带式输送机托辊故障预警与定位研究[D]. 北京:北京化工大学,20240. DONG Naiji. Research on fault early warning and location of belt conveyor idler based on sound signal[D]. Beijing:Beijing University of Chemical Technology,2024.
[58] 宋天祥,杨明锦,杨林顺,等. 基于谱聚类分析的托辊故障诊断[J]. 电子测量技术,2019,42(5):144-150. SONG Tianxiang,YANG Mingjin,YANG Linshun,et al. Fault diagnosis for roller based on spectral clustering analysis[J]. Electronic Measurement Technology,2019,42(5):144-150.
[59] 董瑞佳. 基于迁移学习和DenseNet的带式输送机托辊故障检测方法[J]. 煤炭技术,2023,42(1):250-252. DONG Ruijia. Fault detection method of belt conveyor idler based on transfer learning and DenseNet[J]. Coal Technology,2023,42(1):250-252.
[60] 张高祥. 基于声音信号的带式输送机托辊故障检测系统设计与研究[D]. 徐州:中国矿业大学,2022. ZHANG Gaoxiang. Design and research on fault detection system of belt conveyor roller based on sound signal[D]. Xuzhou:China University of Mining and Technology,2022.
[61] 张伟,李军霞,吴磊,等. 基于1DCNN−ELM的带式输送机托辊轴承故障诊断研究[J]. 煤炭科学技术,2023,51(增刊1):383-389. ZHANG Wei,LI Junxia,WU Lei,et al. Research on fault diagnosis of idler bearing of belt conveyor based on 1DCNN-ELM[J]. Coal Science and Technology,2023,51(S1):383-389.
[62] 张雄,武文博,李嘉禄,等. 基于波束形成及CNN−LSTM的托辊故障距离估计模型[J]. 噪声与振动控制,2024,44(5):114-119. ZHANG Xiong,WU Wenbo,LI Jialu,et al. Roller fault distance estimation model based on beamforming and CNN-LSTM[J]. Noise and Vibration Control,2024,44(5):114-119.
[63] 陈维望,李军霞,张伟. 基于分支卷积神经网络的托辊轴承故障分级诊断研究[J]. 机电工程,2022,39(5):596-603. CHEN Weiwang,LI Junxia,ZHANG Wei. Hierarchical fault diagnosis of idler bearing based on branch convolutional neural network[J]. Journal of Mechanical & Electrical Engineering,2022,39(5):596-603.
[64] 张皞正. 基于数据的托辊故障诊断方法的研究[D]. 沈阳:东北大学,2021. ZHANG Haozheng. Data-based research on fault diagnosis method of roller based[D]. Shenyang:Northeastern University,2021.
[65] 白渊铭. 多源异构数据融合的带式输送机深度学习故障检测算法研究[D]. 太原:太原师范学院,2023. BAI Yuanming. Research on fault detection algorithm of belt conveyor based on multi-source heterogeneous data fusion[D]. Taiyuan:Taiyuan Normal University,2023.
[66] 宋鹏飞,梅秀庄,尚志强,等. 基于数字孪生的带式输送机状态综合监测[J]. 煤矿机械,2024,45(1):196-198. SONG Pengfei,MEI Xiuzhuang,SHANG Zhiqiang,et al. Comprehensive monitoring of belt conveyor state based on digital twin[J]. Coal Mine Machinery,2024,45(1):196-198.
[67] 高波,袁媛,岳伟,等. 基于机器学习的托辊故障等级评价模型研究[J]. 物流科技,2023,46(13):32-35. GAO Bo,YUAN Yuan,YUE Wei,et al. Research on fault grade evaluation model of roller based on machine learning[J]. Logistics Sci-Tech,2023,46(13):32-35.
[68] 李士明,马新宇,郭依尉. 煤矿主运输皮带故障智能诊断与保护研究[J]. 中国矿业,2012,21(增刊1):592-595. LI Shiming,MA Xinyu,GUO Yiwei. The research on intelligent diagnosis and protection of the fault of the main transportation belt in coal mine[J]. China Mining Magazine,2012,21(S1):592-595.
[69] 宋超. 掘进巷道带式输送机常见故障及处理措施[J]. 现代机械,2022(1):100-102. SONG Chao. Common faults and countermeasures of belt conveyor in excavation roadway[J]. Modern Machinery,2022(1):100-102.
[70] 郑茂全. 煤矿带式输送机的优化控制与状态监测的研究[D]. 西安:西安科技大学,2015. ZHENG Maoquan. Study on optimal control and condition monitoring of belt conveyor in coal mine[D]. Xi'an:Xi'an University of Science and Technology,2015.
[71] 赵炎. 基于电流检测的带式输送机故障预判和节能研究[D]. 秦皇岛:燕山大学,2015. ZHAO Yan. Research on fault prediction and energy saving of belt conveyor based on current detection[D]. Qinhuangdao:Yanshan University,2015.
[72] 曹帅,王晓鹏,鲍康润. 煤矿胶带输送机常见故障处理技术研究[J]. 现代制造技术与装备,2024,60(9):166-168. CAO Shuai,WANG Xiaopeng,BAO Kangrun. Research on common fault handling technology of coal mine belt conveyor[J]. Modern Manufacturing Technology and Equipment,2024,60(9):166-168.
[73] 罗伟刚. 皮带运输机在煤矿运输中的常见故障与处理[J]. 矿业装备,2023(3):176-178. LUO Weigang. Common faults and treatment of belt conveyor in coal mine transportation[J]. Mining Equipment,2023(3):176-178.
[74] 爱保柱. 煤矿胶带输送机常见故障分析及处理[J]. 矿业装备,2022(2):262-263. AI Baozhu. Analysis and treatment of common faults of coal mine belt conveyor[J]. Mining Equipment,2022(2):262-263.