Analysis of the effect of cutting depth under thick immediate roof on gob-side entry retaining stability
-
摘要:
切顶卸压沿空留巷稳定性主要受切顶参数影响,而厚直接顶作用下沿空巷道合理切顶参数的确定较为复杂。以陕西陕煤黄陵矿业有限公司一号煤矿1009工作面辅运巷为工程背景,采用理论分析、数值计算及现场监测相结合的方法,在明确巷道留设工艺为“补强支护+切顶卸压+巷旁支护+巷内临时支护”的基础上,分析了厚直接顶作用下沿空留巷工艺流程及合理参数,研究了切顶深度为7.5,8.5,9.5 m条件下工作面矿压显现规律及巷道应力和位移特征,确定了沿空巷道合理切顶深度,并通过现场监测确定了成巷效果。结果表明:巷道切顶深度直接影响成巷效果,切顶角度一定时,切顶深度越接近于直接顶厚度,垮落矸石对顶板支撑力越大,岩层稳定性越强;随着切顶深度增大,工作面来压步距减小、来压强度降低,巷道应力集中峰值和顶板位移下沉量减小;确定切顶深度为8.5 m,此时留巷完成后巷道应力集中峰值和最大位移分别为13.6 MPa、235 mm。现场监测结果显示,进入正常留巷段后巷道最大下沉量为252 mm,让压锚索最大载荷为412 kN,垛式支架最大工作阻力为41.9 MPa,巷道稳定性较好,留巷效果显著。
Abstract:The stability of gob-side entry retaining with roof cutting and pressure relief is primarily influenced by roof cutting parameters. However, determining appropriate cutting parameters for gob-side entry under the effect of a thick immediate roof is relatively complex. Taking the auxiliary transport roadway of the 1009 working face at No. 1 Coal Mine of Shaanxi Shanmei Huangling Mining Industry Co., Ltd. as the engineering background, a combination of theoretical analysis, numerical calculation, and field monitoring was employed in this study. Based on the understanding that the gob-side entry retaining process includes "reinforcement support, roof cutting and pressure relief, sidewall support, and temporary support within the roadway", the study analyzed the process and appropriate parameters of gob-side entry retaining under the effect of a thick immediate roof. It examined the mining pressure manifestation patterns, as well as the roadway stress and displacement characteristics under roof cutting depths of 7.5, 8.5, and 9.5 m, determining the reasonable roof cutting depth for the gob-side entry. Field monitoring was conducted to verify the effectiveness of the entry construction outcome. The results indicated that the cutting depth directly affected the entry construction outcome. When the cutting angle was fixed, the closer the cutting depth was to the thickness of the immediate roof, the greater the support force from the caving gangue to the roof, resulting in stronger stability of the rock strata. As the cutting depth increased, the step distance of the mining pressure decreased, the pressure intensity reduced, and the peak value of the stress concentration and roof subsidence displacement in the roadway reduced. The optimal cutting depth was determined to be 8.5 m, at which point the peak stress concentration and maximum displacement of the roadway after completion were 13.6 MPa and 235 mm, respectively. Field monitoring results showed that after entering the stable gob-side entry retaining section, the maximum subsidence of the roadway was 252 mm, the maximum load of the pressure-relief anchor cable was 412 kN, and the maximum working resistance of the stacking support was 41.9 MPa. The roadway stability was excellent, and the gob-side entry retaining effect was significant.
-
-
表 1 煤岩及支护体物理力学参数
Table 1 Physical and mechanical parameters of coal rock and support body
名称 密度/
(kg·m−3)体积模量/
GPa剪切模量/
GPa抗拉强度/
MPa黏聚力/
MPa内摩擦角/
(°)上覆岩层 2 550 4.15 3.80 0.71 1.30 33.0 基本顶 2 470 4.20 3.30 0.66 1.17 34.0 直接顶 2 160 3.30 2.56 0.57 0.86 34.0 预制切缝 2 160 3.30 2.56 0.57 0.86 34.0 煤层 1 350 2.40 1.20 0.33 0.78 28.0 直接底 2 530 3.40 2.70 0.65 0.93 37.0 基本底 2 420 4.10 2.90 0.68 1.05 37.5 下伏岩层 2 710 4.60 3.50 0.72 1.20 38.0 巷旁
支护体2 700 5.20 4.30 0.65 1.43 32.0 临时
支护体2 460 6.40 4.80 0.52 1.63 40.0 -
[1] 中国煤炭工业协会. 2022煤炭行业发展年度报告[R]. 北京:中国煤炭工业协会,2023. China National Coal Association. 2022 Coal industry development annual report[R]. Beijing:China National Coal Association,2023.
[2] 刘峰,郭林峰,赵路正. 双碳背景下煤炭安全区间与绿色低碳技术路径[J]. 煤炭学报,2022,47(1):1-15. LIU Feng,GUO Linfeng,ZHAO Luzheng. Research on coal safety range and green low-carbon technology path under the dual-carbon background[J]. Journal of China Coal Society,2022,47(1):1-15.
[3] 王国法,庞义辉,许永祥,等. 厚煤层智能绿色高效开采技术与装备研发进展[J]. 采矿与安全工程学报,2023,40(5):882-893. WANG Guofa,PANG Yihui,XU Yongxiang,et al. Development of intelligent green and efficient mining technology and equipment for thick coal seam[J]. Journal of Mining & Safety Engineering,2023,40(5):882-893.
[4] 何满潮,齐干,程骋,等. 深部复合顶板煤巷变形破坏机制及耦合支护设计[J]. 岩石力学与工程学报,2007,26(5):987-993. HE Manchao,QI Gan,CHENG Cheng,et al. Deformation and damage mechanisms and coupling support design in deep coal roadway with compound roof[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(5):987-993.
[5] 何满潮. 无煤柱自成巷开采理论与110工法[J]. 采矿与安全工程学报,2023,40(5):869-881. HE Manchao. Theory and engineering practice for non-pillars mining with automagical entry formation and 110 mining method[J]. Journal of Mining & Safety Engineering,2023,40(5):869-881.
[6] 华心祝. 我国沿空留巷支护技术发展现状及改进建议[J]. 煤炭科学技术,2006,34(12):78-81. HUA Xinzhu. Development status and improved proposals on gob-side entry retaining support technology in China[J]. Coal Science and Technology,2006,34(12):78-81.
[7] 华心祝,李琛,刘啸,等. 再论我国沿空留巷技术发展现状及改进建议[J]. 煤炭科学技术,2023,51(1):128-145. HUA Xinzhu,LI Chen,LIU Xiao,et al. Current situation of gob-side entry retaining and suggestions for its improvement in China[J]. Coal Science and Technology,2023,51(1):128-145.
[8] 费旭敏. 我国沿空留巷支护技术现状及存在的问题探讨[J]. 中国科技信息,2008(7):48-49,51. FEI Xumin. The status-quo of support technology on gob-side entry retaining laneway and existing problem discussion[J]. China Science and Technology Information,2008(7):48-49,51.
[9] 李化敏,顾明,周英,等. 晋城矿区9号煤沿空留巷试验研究[J]. 焦作工学院学报(自然科学版),2000,19(2):90-93. LI Huamin,GU Ming,ZHOU Ying,et al. A study of gob-side entry of coal No. 9 in Jincheng Coal Mining Area[J]. Journal of Jiaozuo Institute of Technology(Natural Science),2000,19(2):90-93.
[10] 郭鹏飞. 延安禾二矿切顶卸压沿空留巷无煤柱开采研究及应用[D]. 北京:中国矿业大学(北京),2018. GUO Pengfei. Study and application on gob-side entry retaining by roof cut and pressure relief in Hecaogou Coal Mine in Yan'an[D]. Beijing:China University of Mining and Technology-Beijing,2018.
[11] 张国锋,何满潮,俞学平,等. 白皎矿保护层沿空切顶成巷无煤柱开采技术研究[J]. 采矿与安全工程学报,2011,28(4):511-516. ZHANG Guofeng,HE Manchao,YU Xueping,et al. Research on the technique of no-pillar mining with gob-side entry formed by advanced roof caving in the protective seam in Baijiao Coal Mine[J]. Journal of Mining & Safety Engineering,2011,28(4):511-516.
[12] 刘小强,张国锋. 软弱破碎围岩切顶卸压沿空留巷技术[J]. 煤炭科学技术,2013,41(增刊2):133-134. LIU Xiaoqiang,ZHANG Guofeng. Technology of roof cutting pressure relief gob-side entry retaining in soft fractured stratum[J]. Coal Science and Technology,2013,41(S2):133-134.
[13] 王维维,李凤义,兰永伟. 切顶卸压沿空留巷技术研究及应用[J]. 黑龙江科技大学学报,2014,24(1):20-23. WANG Weiwei,LI Fengyi,LAN Yongwei. Study on and application of pressure relief by roof cutting on gob-entry retaining[J]. Journal of Heilongjiang University of Science and Technology,2014,24(1):20-23.
[14] 黄子明,黄光平,周军,等. 杉木树煤矿切顶卸压沿空成巷无煤柱开采技术应用研究[J]. 科技创新导报,2013,10(7):67-68. HUANG Ziming,HUANG Guangping,ZHOU Jun,et al. Study on non-pillar mining technology of pressure relief by roof cutting in the roadway formed along gob of Shanmushu Mine[J]. Science and Technology Innovation Herald,2013,10(7):67-68.
[15] 杨威,周谢康,祖自银,等. 中厚煤层坚硬顶板切顶卸压自成巷切顶效果及应用研究[J]. 煤炭工程,2021,53(11):48-52. YANG Wei,ZHOU Xiekang,ZU Ziyin,et al. Application of gob-side entry retaining through roof cutting pressure releasing in medium-thick coal seam with hard roof[J]. Coal Engineering,2021,53(11):48-52.
[16] 刘兵晨,秦建飞,许向前. 综放工作面沿空留巷支护结构优化[J]. 矿业安全与环保,2022,49(4):187-193. LIU Bingchen,QIN Jianfei,XU Xiangqian. Support structure optimization of gob-side entry retaining in fully mechanized caving face[J]. Mining Safety & Environmental Protection,2022,49(4):187-193.
[17] 李小鹏,刘少伟,付孟雄,等. 密集钻孔切顶卸压关键参数影响因素研究及应用[J]. 煤炭科学技术,2023,51(12):243-253. LI Xiaopeng,LIU Shaowei,FU Mengxiong,et al. Research and application of influencing factors of key parameters of roof cutting and pressure relief by dense drilling[J]. Coal Science and Technology,2023,51(12):243-253.
[18] 胡超文,王俊虎,何满潮,等. 中厚煤层切顶卸压无煤柱自成巷技术关键参数研究[J]. 煤炭科学技术,2022,50(4):117-123. HU Chaowen,WANG Junhu,HE Manchao,et al. Study on key parameters of self-formed roadway without coal pillar by roof cutting and pressure relief in medium and thick coal seam[J]. Coal Science and Technology,2022,50(4):117-123.
[19] 孙晓明,刘鑫,梁广峰,等. 薄煤层切顶卸压沿空留巷关键参数研究[J]. 岩石力学与工程学报,2014,33(7):1449-1456. SUN Xiaoming,LIU Xin,LIANG Guangfeng,et al. Key parameters of gob-side entry retaining formed by roof cut and pressure releasing in thin coal seams[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(7):1449-1456.
[20] 汤建泉,霍雪峰,杨华富,等. 沿空切顶成巷段巷道围岩变形规律研究[J]. 矿业安全与环保,2020,47(1):40-44. TANG Jianquan,HUO Xuefeng,YANG Huafu,et al. Study on deformation law of surrounding rock in gob-side entry retaining formed by roof fracturing[J]. Mining Safety & Environmental Protection,2020,47(1):40-44.
[21] 许旭辉,何富连,吕凯,等. 厚层坚硬顶板切顶留巷合理切顶参数[J]. 煤炭学报,2023,48(8):3048-3059. XU Xuhui,HE Fulian,LYU Kai,et al. Research on reasonable cutting roof parameters of gob side entry retaining by roof cutting in thick and hard roof[J]. Journal of China Coal Society,2023,48(8):3048-3059.
[22] 李利峰. 切顶成巷“短臂梁”效应及层状顶板运动规律研究[D]. 北京:中国矿业大学(北京),2021. LI Lifeng. The effect of "short arm beam" and the movement rule of layered roof in roadway formed by cutting roof[D]. Beijing:China University of Mining and Technology-Beijing,2021.
-
期刊类型引用(36)
1. 宁少慧,张少鹏,段攀龙,邓功也,杜越. 带式输送机智能托辊设计与仿真. 起重运输机械. 2024(24): 38-43+90 . 百度学术
2. 魏学平. 皮带运输机巡检机器人数据处理系统设计与实现. 机械工程与自动化. 2023(04): 144-146 . 百度学术
3. 于建军. 基于双网冗余通信的矿用带式输送机集控系统开发. 山西焦煤科技. 2023(07): 37-42 . 百度学术
4. 张立峰,武小芳. 基于PAC的输煤皮带巡检机器人设计与研究. 中国设备工程. 2023(23): 198-200 . 百度学术
5. 唐云鹏. 煤矿井下智能安全监测巡检机器人的应用研究. 机械管理开发. 2023(12): 185-186+189 . 百度学术
6. 江新奇,刘敬玉,李忠飞,刘志华,龙永祥. 煤矿巡检机器人智能传感与控制系统设计研究. 煤炭工程. 2022(01): 171-175 . 百度学术
7. 高志敏. 长距离带式输送机巡检系统研究. 煤炭科技. 2022(02): 62-66 . 百度学术
8. 蔡治华,周东旭,赵明辉. 煤矿巡检机器人控制系统设计. 工矿自动化. 2022(05): 112-117 . 本站查看
9. 郝志东. 露天矿巡检机器人设计及严寒环境下电池预热性能研究. 煤炭工程. 2022(05): 115-119 . 百度学术
10. 任俊瑾. 矿用带式输送机巡检机器人控制系统方案研究与应用. 山西焦煤科技. 2022(04): 13-15 . 百度学术
11. 朱明亮,苏士龙,陈骋. 煤矿用双机驱动型吊轨式巡检机器人设计. 煤炭技术. 2022(06): 202-205 . 百度学术
12. 方崇全. 煤矿带式输送机巡检机器人关键技术研究. 煤炭科学技术. 2022(05): 263-270 . 百度学术
13. 杨孝新,刘婷婷,刘福明,王伟. 露天煤矿带式输送机智能巡检机器人. 露天采矿技术. 2022(04): 48-51 . 百度学术
14. 姚华龙. 带式输送机巡检机器人控制系统及样机试验测试. 机械管理开发. 2022(08): 245-246+249 . 百度学术
15. 赵云龙. 煤矿主斜井带式输送机智能巡检系统设计. 煤炭技术. 2022(10): 219-222 . 百度学术
16. 唐俊,李敬兆,石晴,刘阳,宋世现,任成成. 带式输送机上散状物料堆积视频实时检测. 工矿自动化. 2022(10): 62-68+75 . 本站查看
17. 黄世顶,韩雷,芦伟,刘洪刚. 带式输送机巡检机器人研究. 起重运输机械. 2021(01): 79-83 . 百度学术
18. 张伟. 二氧化碳激光治疗仪故障自动检测系统设计. 自动化与仪器仪表. 2021(03): 123-126 . 百度学术
19. 刘宇,郑琳,于力,王春,张琼华,刘明江. 基于多传感器融合技术的配电室智能巡检系统设计. 工业仪表与自动化装置. 2021(02): 63-68 . 百度学术
20. 梁占泽. 矿用带式输送机巡检机器人驱动系统设计. 工矿自动化. 2021(04): 108-112 . 本站查看
21. 刘晓宁. 煤矿带式输送机运输系统故障巡检机器人设计. 中国石油和化工标准与质量. 2021(06): 175-177 . 百度学术
22. 游磊,朱兴林,秦伟,罗明华. 基于曲面重建的带式输送机堆煤识别方法. 工矿自动化. 2021(06): 45-50 . 本站查看
23. 王力浩,丁文捷,郝洪涛,黄政荭. 一种巡检载具及运动特性研究. 宁夏工程技术. 2021(02): 177-182 . 百度学术
24. 隋淼,宗鸣. 自供电的带式输送机速度监测系统研究. 电气技术. 2021(08): 90-94 . 百度学术
25. 金建成. 矿用巡检机器人能源动力技术研究. 中国新技术新产品. 2021(18): 10-12 . 百度学术
26. 李子江. 带式输送机自动巡检机器人的应用研究. 机械管理开发. 2021(12): 228-229+232 . 百度学术
27. 李涛,于志强,史占锋,王永振,张晓光. 选煤厂输煤系统轨道式巡检机器人. 煤炭科技. 2021(06): 104-108 . 百度学术
28. 宣鹏程,孙稚媛,周东旭,涂俊,贾瑞清. 煤矿轨道式带式输送机巡检机器人系统设计. 煤矿机械. 2020(05): 1-3 . 百度学术
29. 赵海明. 矿井带式输送机故障巡检机器人系统的研究. 江西化工. 2020(03): 287-289 . 百度学术
30. 刘惠灵,邓传华,邵彦宁. 基于增强现实的设备运行故障智能巡检系统. 电子设计工程. 2020(15): 124-128 . 百度学术
31. 邹盛,沈科,陈晓晶,徐辉,季亮,王晓波. 基于Hough变换的带式输送机托辊图像分割方法. 能源与环保. 2020(10): 169-172 . 百度学术
32. 马娅莎. 皮带输送机常见故障与解决措施. 陕西煤炭. 2020(06): 176-179 . 百度学术
33. 伊鑫,杨明锦,杨林顺,张海军,彭晨. 基于KNN与SVM两级综合健康指标的托辊故障诊断方法. 选煤技术. 2020(05): 94-102 . 百度学术
34. 程炜. 互联网环境下医院巡视机器人设计和仿真实现的研究. 科技通报. 2020(11): 45-48+88 . 百度学术
35. 刘利明,贺振华,柳骁,李浩. 轨道式输送带巡检机器人设计与应用研究. 煤炭工程. 2020(S2): 6-10 . 百度学术
36. 李康,王宁,李军霞. 液压软制动系统在下运式带式输送机中的应用. 液压与气动. 2019(07): 63-69 . 百度学术
其他类型引用(19)