Characteristics of strong mine pressure manifestation in composite hard roofs and determination of main controlling layers
-
摘要:
煤层上方复合坚硬顶板结构间的相互作用关系复杂,水力压裂复合顶板的卸压主控层位难以明确。以乌审旗蒙大矿业有限责任公司纳林河二号矿井31104−1工作面为工程背景,综合采用物理相似模拟、理论分析、工程试验的研究方法,分析了复合坚硬顶板破断与能量演化规律,揭示了复合坚硬顶板强矿压形成机理,明确了水力压裂的主控层位。研究结果表明:复合坚硬顶板工作面开采初期,顶板垮落范围集中于低位坚硬顶板,其周期性破断形成工作面周期来压;高位坚硬顶板受下部垮落矸石支撑作用难以充分垮落,工作面推进至一次见方位置时,高位坚硬顶板协同间隔岩层整体切落,工作面产生强矿压现象;采用定向预裂高位坚硬顶板后,工作面覆岩呈现典型的“三带”结构,上方顶板及时破断下沉,工作面见方位置较预裂低位坚硬顶板声发射振铃计数减少了38.36%,微震事件集中分布区能量降低至1 000~2 000 J,且现场实测顶板微震事件总能量、单刀能量及事件数较预裂低位坚硬顶板时分别降低了62.17%,71.92%,56.32%,表明高位坚硬顶板为卸压主控层位,预裂高位坚硬顶板能有效抑制工作面强矿压现象。
Abstract:The interactions within the composite hard roof structure above coal seams are highly complex, making it challenging to identify the main controlling layers for pressure relief via hydraulic fracturing. Using the 31104-1 working face of the Nalinhe No. 2 Mine at Wushenqi Mengda Mining Co., Ltd. as the engineering background, this study employed physical similarity simulation, theoretical analysis, and engineering tests to investigate the fracture and energy evolution patterns of composite hard roofs. The study revealed the mechanism behind strong mine pressure in composite hard roofs and identified the main controlling layers for hydraulic fracturing. The results showed that during the initial mining phase of the composite hard roof working face, the collapse was concentrated in the lower hard roof, with periodic fractures creating periodic pressure on the working face. The upper hard roof, supported by collapsed gangue below, failed to collapse fully. When the working face advanced to a square position, the upper hard roof and the intervening strata collectively fractured, causing strong mine pressure. After directional pre-splitting of the upper hard roof, the overburden exhibited a typical "three-zone" structure, allowing the upper roof to fracture and sink promptly. At the square position of the working face, the acoustic emission ringing count of the upper roof decreased by 38.36% compared to pre-splitting of the lower hard roof. The energy in the concentrated microseismic event area was reduced to
1000 -2000 J, while the total microseismic energy, single-pick energy, and number of events decreased by 62.17%, 71.92%, and 56.32%, respectively, compared to the pre-splitting of the lower hard roof. These findings confirmed that the upper hard roof was the main controlling layer for pressure relief, and pre-splitting the upper hard roof effectively suppressed strong mine pressure on the working face. -
-
表 1 煤岩物理力学参数
Table 1 Physical and mechanical parameters of coal and rock
层号 岩层柱状 岩性 厚度/m 抗拉强度/MPa 内摩擦角/(°) 黏聚力/MPa 体积模量/GPa 剪切模量/GPa 1 粉砂岩 16.00 2.20 42 1.55 18.5 10.2 2 砂质泥岩 12.00 2.00 38 1.20 15.3 10.5 3 粉砂岩 12.00 2.20 42 1.55 18.5 10.2 4 细粒砂岩 17.80 2.30 40 1.32 17.0 9.5 5 砂质泥岩 17.60 2.00 38 1.20 15.3 10.5 6 细粒砂岩 17.80 2.30 40 1.32 17.0 9.5 7 粉砂岩 12.00 2.30 38 1.55 18.5 10.5 8 砂质泥岩 17.80 2.00 42 1.20 15.3 9.5 9 粉砂岩 23.20 2.20 38 1.55 18.5 10.5 10 砂质泥岩 20.17 2.00 42 1.20 15.3 10.2 11 粉砂岩 10.47 2.20 40 1.55 18.5 10.5 12 细粒砂岩(高位) 28.56 2.30 42 1.32 9.5 10.2 13 粉砂岩 6.60 2.20 38 1.55 18.5 9.5 14 砂质泥岩 14.60 2.00 42 1.20 15.3 10.5 15 细粒砂岩(低位) 25.70 2.30 40 1.32 17.0 9.5 16 粉砂岩 16.00 2.20 42 1.55 18.5 10.2 17 3−1煤 5.60 0.33 32 0.78 5.4 3.6 表 2 相似材料配比
Table 2 Proportions of similarity materials
层号 岩层名称 模型
厚度/cm配比 质量/kg 河砂 石膏 大白粉 煤粉 1 粉砂岩 8.00 8∶0.3∶7 113.76 4.28 9.96 — 2 砂质泥岩 6.00 8∶0.2∶0.8 85.32 2.13 8.52 — 3 粉砂岩 6.00 8∶0.3∶0.7 85.32 3.21 7.47 — 4 细粒砂岩 8.90 7∶0.3∶0.7 124.60 5.34 12.46 — 5 砂质泥岩 8.80 8∶0.2∶0.8 125.14 3.12 12.50 — 6 细粒砂岩 8.90 7∶0.3∶0.7 124.60 5.34 12.46 — 7 粉砂岩 6.00 8∶0.3∶0.7 85.32 3.21 7.47 — 8 砂质泥岩 8.90 8∶0.2∶0.8 126.56 3.15 12.63 — 9 细粒砂岩 11.60 7∶0.3∶0.7 162.40 6.96 16.24 — 10 砂质泥岩 10.10 8∶0.2∶0.8 143.62 3.59 14.34 — 11 粉砂岩 5.20 8∶0.3∶0.7 73.94 2.78 6.47 — 12 细粒砂岩(高位) 14.30 7∶0.3∶0.7 200.20 8.58 20.02 — 13 粉砂岩 3.30 8∶0.3∶0.7 46.92 1.77 4.11 — 14 砂质泥岩 7.30 8∶0.2∶0.8 103.81 2.59 10.37 — 15 细粒砂岩(低位) 12.85 7∶0.3∶0.7 179.90 7.71 17.99 — 16 粉砂岩 8.00 8∶0.3∶0.7 113.76 4.28 9.96 — 17 3−1煤 2.80 26∶1∶2∶16 22.97 1.14 3.44 17.23 -
[1] 郭超,宋卫华,魏威. 基于网格搜索-支持向量机的采场顶板稳定性预测[J]. 中国安全科学学报,2014,24(8):31-36. GUO Chao,SONG Weihua,WEI Wei. Stope roof stability prediction based on both SVM and grid-search method[J]. China Safety Science Journal,2014,24(8):31-36.
[2] 王海洋,于斌,夏彬伟,等. 复合坚硬顶板水压裂缝扩展过程研究[J]. 中国安全科学学报,2017,27(4):98-103. WANG Haiyang,YU Bin,XIA Binwei,et al. Study on propagation of hydraulic fracture in combined hard roof[J]. China Safety Science Journal,2017,27(4):98-103.
[3] 于斌. 大同矿区特厚煤层综放开采强矿压显现机理及顶板控制研究[D]. 徐州:中国矿业大学,2014. YU Bin. Study on strongpressure behavior mechanism and roof control of fully mechanized top coal caving in extra thickness seam in datong coal mine[D]. Xuzhou:China University of Mining and Technology,2014.
[4] 王开,康天合,李海涛,等. 坚硬顶板控制放顶方式及合理悬顶长度的研究[J]. 岩石力学与工程学报,2009,28(11):2320-2327. WANG Kai,KANG Tianhe,LI Haitao,et al. Study of control caving methods and reasonable hanging roof length on hard roof[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(11):2320-2327.
[5] 杨敬轩,鲁岩,刘长友,等. 坚硬厚顶板条件下岩层破断及工作面矿压显现特征分析[J]. 采矿与安全工程学报,2013,30(2):211-217. YANG Jingxuan,LU Yan,LIU Changyou,et al. Analysis on the rock failure and strata behavior characteristics under the condition of hard and thick roof[J]. Journal of Mining & Safety Engineering,2013,30(2):211-217.
[6] 谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报,2019,44(5):1283-1305. XIE Heping. Research review of the state key research development program of China:deep rock mechanics and mining theory[J]. Journal of China Coal Society,2019,44(5):1283-1305.
[7] 窦林名,曹胜根,刘贞堂,等. 三河尖煤矿坚硬顶板对冲击矿压的影响分析[J]. 中国矿业大学学报,2003,32(4):388-392. DOU Linming,CAO Shenggen,LIU Zhentang,et al. Influence of key roof on rock burst in Sanhejian Mine[J]. Journal of China University of Mining & Technology,2003,32(4):388-392.
[8] 何江,窦林名,王崧玮,等. 坚硬顶板诱发冲击矿压机理及类型研究[J]. 采矿与安全工程学报,2017,34(6):1122-1127. HE Jiang,DOU Linming,WANG Songwei,et al. Study on mechanism and types of hard roof inducing rock burst[J]. Journal of Mining & Safety Engineering,2017,34(6):1122-1127.
[9] 李新元,马念杰,钟亚平,等. 坚硬顶板断裂过程中弹性能量积聚与释放的分布规律[J]. 岩石力学与工程学报,2007,26(增刊1):2786-2793. LI Xinyuan,MA Nianjie,ZHONG Yaping,et al. Storage and release regular of elastic energy distribution in tight roof fracturing[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(S1):2786-2793.
[10] 吕进国,姜耀东,李守国,等. 巨厚坚硬顶板条件下断层诱冲特征及机制[J]. 煤炭学报,2014,39(10):1961-1969. LYU Jinguo,JIANG Yaodong,LI Shouguo,et al. Characteristics and mechanism research of coal bumps induced by faults based on extra thick and hard roof[J]. Journal of China Coal Society,2014,39(10):1961-1969.
[11] 潘岳,顾士坦,王志强. 煤层塑性区对坚硬顶板力学特性影响分析[J]. 岩石力学与工程学报,2015,34(12):2486-2499. PAN Yue,GU Shitan,WANG Zhiqiang. Influence of coal seam plastic zone on hard roof mechanical behaviour[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(12):2486-2499.
[12] 谭云亮,张明,徐强,等. 坚硬顶板型冲击地压发生机理及监测预警研究[J]. 煤炭科学技术,2019,47(1):166-172. TAN Yunliang,ZHANG Ming,XU Qiang,et al. Study on occurrence mechanism and monitoring and early warning of rock burst caused by hard roof[J]. Coal Science and Technology,2019,47(1):166-172.
[13] 杨登峰,陈忠辉,洪钦锋,等. 浅埋煤层开采顶板切落压架灾害的突变分析[J]. 采矿与安全工程学报,2016,33(1):122-127,133. YANG Dengfeng,CHEN Zhonghui,HONG Qinfeng,et al. Catastrophic analysis of support crushing disasters while roof cutting in shallow seam mining[J]. Journal of Mining & Safety Engineering,2016,33(1):122-127,133.
[14] 马玉镇,朱斯陶,潘俊锋,等. 煤矿覆岩主控致灾层位危险识别及现场应用[J]. 煤炭学报,2024,49(6):2589-2603. MA Yuzhen,ZHU Sitao,PAN Junfeng,et al. Identification and on-site application of the main hazard-causing stratum of overlying strata in coal mines[J]. Journal of China Coal Society,2024,49(6):2589-2603.
[15] 郑凯歌,袁亮,张平松,等. 复合关键层厚硬顶板诱冲机制与防治技术模式[J]. 煤田地质与勘探,2024,52(10):14-24. ZHENG Kaige,YUAN Liang,ZHANG Pingsong,et al. Rock bursts induced by thick-hard roof with compound key strata:mechanisms and technical modes for prevention[J]. Coal Geology & Exploration,2024,52(10):14-24.
[16] 康红普,冯彦军. 煤矿井下水力压裂技术及在围岩控制中的应用[J]. 煤炭科学技术,2017,45(1):1-9. KANG Hongpu,FENG Yanjun. Hydraulic fracturing technology and its applications in strata control in underground coal mines[J]. Coal Science and Technology,2017,45(1):1-9.
[17] 康红普,姜鹏飞,冯彦军,等. 煤矿巷道围岩卸压技术及应用[J]. 煤炭科学技术,2022,50(6):1-15. KANG Hongpu,JIANG Pengfei,FENG Yanjun,et al. Destressing technology for rock around coal mine roadways and its applications[J]. Coal Science and Technology,2022,50(6):1-15.
[18] 冯彦军,康红普. 定向水力压裂控制煤矿坚硬难垮顶板试验[J]. 岩石力学与工程学报,2012,31(6):1148-1155. FENG Yanjun,KANG Hongpu. Test on hard and stable roof control by means of directional hydraulic fracturing in coal mine[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(6):1148-1155.
[19] 康红普,冯彦军,张震,等. 煤矿井下定向钻孔水力压裂岩层控制技术及应用[J]. 煤炭科学技术,2023,51(1):31-44. KANG Hongpu,FENG Yanjun,ZHANG Zhen,et al. Hydraulic fracturing technology with directional boreholes for strata control in underground coal mines and its application[J]. Coal Science and Technology,2023,51(1):31-44.
[20] 吴拥政,康红普. 煤柱留巷定向水力压裂卸压机理及试验[J]. 煤炭学报,2017,42(5):1130-1137. WU Yongzheng,KANG Hongpu. Pressure relief mechanism and experiment of directional hydraulic fracturing in reused coal pillar roadway[J]. Journal of China Coal Society,2017,42(5):1130-1137.
[21] 黄炳香,王友壮. 顶板钻孔割缝导向水压裂缝扩展的现场试验[J]. 煤炭学报,2015,40(9):2002-2008. HUANG Bingxiang,WANG Youzhuang. Field investigation on crack propagation of directional hydraulic fracturing in hard roof[J]. Journal of China Coal Society,2015,40(9):2002-2008.
[22] 贾进章,王东明,李斌. 水力压裂有效压裂半径的影响因素研究[J]. 中国安全生产科学技术,2022,18(6):58-64. JIA Jinzhang,WANG Dongming,LI Bin. Study on influencing factors of effective fracturing radius of hydraulic fracturing[J]. Journal of Safety Science and Technology,2022,18(6):58-64.
[23] 钟坤,陈卫忠,赵武胜,等. 煤矿坚硬顶板分段水力压裂防冲效果监测与评价[J]. 中南大学学报(自然科学版),2022,53(7):2582-2593. DOI: 10.11817/j.issn.1672-7207.2022.07.018 ZHONG Kun,CHEN Weizhong,ZHAO Wusheng,et al. Monitoring and evaluation of segmented hydraulic fracturing effect in rock burst prevention on hard roof of coal mine[J]. Journal of Central South University (Science and Technology),2022,53(7):2582-2593. DOI: 10.11817/j.issn.1672-7207.2022.07.018
[24] 牛同会. 分段水力压裂弱化采场坚硬顶板围岩控制技术研究[J]. 煤炭科学技术,2022,50(8):50-59. NIU Tonghui. Study on surrounding rock control technology for weakened hard roof of stope by staged hydraulic fracturing[J]. Coal Science and Technology,2022,50(8):50-59.
[25] 郑凯歌,袁亮,杨森,等. 基于分区弱化的复合坚硬顶板冲击地压分段压裂区域防治研究[J]. 采矿与安全工程学报,2023,40(2):322-333. ZHENG Kaige,YUAN Liang,YANG Sen,et al. Study on prevention and control of rock burst staged fracturing area of composite hard roof based on zoning weakening[J]. Journal of Mining & Safety Engineering,2023,40(2):322-333.
-
期刊类型引用(14)
1. 曹现刚,段雍,王国法,赵江滨,任怀伟,赵福媛,杨鑫,张鑫媛,樊红卫,薛旭升,李曼. 煤矿设备全寿命周期健康管理与智能维护研究综述. 煤炭学报. 2025(01): 694-714 . 百度学术
2. 曹建文. 分布式电牵引采煤机健康状态监控系统设计. 煤矿机械. 2023(03): 213-216 . 百度学术
3. 赵海发,张成华. 基于LS-DYNA的采煤机滚筒多参数优化设计. 制造业自动化. 2023(03): 144-147 . 百度学术
4. 钱江泳. 采煤机实时健康状态与健康度指示系统开发. 煤矿机电. 2023(02): 22-26 . 百度学术
5. 曹现刚,段雍,赵江滨,杨鑫,赵福媛,樊红卫. 综采设备健康状态评估研究综述. 工矿自动化. 2023(09): 23-35+97 . 本站查看
6. 曹现刚,许欣,雷卓,李彦川. 基于降噪自编码器与改进卷积神经网络的采煤机健康状态识别. 信息与控制. 2022(01): 98-106 . 百度学术
7. 林江. 电牵引采煤机健康度智能评价系统和方法. 煤矿机械. 2022(07): 146-148 . 百度学术
8. 胡金成. 主动半监督RVFLN方法在重介质选煤过程的应用. 中国矿业大学学报. 2022(06): 1232-1240 . 百度学术
9. 严周民,艾志亮,宋学伟. 基于迁移学习的采煤机摇臂传动故障研究. 能源与环保. 2021(05): 196-201 . 百度学术
10. 张俭让,刘睿卿,李学文,王智鹏,史振东. 采煤机运行状态数据分布式实时预测模型. 工矿自动化. 2021(07): 21-28 . 本站查看
11. 包从望,江伟,刘永志,车守全. 基于卷积神经网络的采煤机截割部减速器故障诊断研究. 机电工程. 2021(10): 1317-1323+1331 . 百度学术
12. 马忠昌. 采煤机检修电动机常见故障分析. 中国新技术新产品. 2020(16): 39-40 . 百度学术
13. 马宏伟,聂珍,王川伟,薛旭升,夏晶. 煤矿机器人关键共性技术与发展策略. 智能矿山. 2020(01): 63-70 . 百度学术
14. 曹现刚,马宏伟,段雍,徐田波,王岩,李鹏飞. 煤矿设备智能维护与健康管理技术研究现状与展望. 智能矿山. 2020(01): 105-111 . 百度学术
其他类型引用(6)