Precise wind allocation scheme decision based on attraction-repulsion algorithm
-
摘要:
为解决井下生产作业过程中由于矿井通风设施和风网结构变化导致的通风系统分支风量波动,进而引发的用风地点风量不足问题,提出了一种基于吸引−排斥算法(AROA)的精准分风方法。以通风机功耗最小化为优化目标,工作面与备用面的需风量为约束条件,建立矿井通风系统数学模型。采用AROA,通过精准调控通风机及井下既有通风设施,迭代生成优化解。优化过程中,融合改进布朗运动、三角函数变换、随机解选择机制与记忆型局部搜索算子,对候选解实施动态筛选与精准调优,最终实现通风运行成本最优的精准分风方案。性能测试结果表明:与遗传算法(GA)、模拟退火−改进粒子群算法(SA−IPSO)和单调盆地跳跃算法(MBH)相比,AROA在综合寻优性能方面优势显著;在求解Ackley函数时,其获取最优解与平均最优解所经历的迭代次数均少于GA,SA−IPSO和MBH。实例分析结果表明:采用基于AROA的精准分风算法所确定的精准分风方案后,风窗面积调节量达50.4%;左翼通风机功率从131.72 kW降至97.95 kW,降幅达25.6%;右翼通风机功率从188.22 kW降至146.62 kW,降幅达22.1%;总节能率达23.56%。某煤矿实际应用结果表明:采用基于AROA的精准分风算法所确定的精准分风方案后,通风机风量降低了11.2%,通风机风压下降了10.1%,功率降低了20.7%。
Abstract:To address the issue of fluctuating branch airflow in the ventilation system caused by changes in mine ventilation facilities and air network structure during underground production operations, which in turn leads to insufficient airflow at consumption points, a precise wind allocation algorithm based on the Attraction-Repulsion Optimization Algorithm (AROA) is proposed. The ventilation fan power consumption minimization was set as the optimization objective, with the required airflow for working and standby faces as constraints, and a mathematical model of the mine ventilation system was established. By employing AROA, the ventilation fan and existing underground ventilation facilities were precisely controlled, and an optimized solution was iteratively generated. During the optimization process, an improved Brownian motion, trigonometric function transformation, random solution selection mechanism, and memory-based local search operator were integrated to dynamically filter and fine-tune candidate solutions, ultimately achieving an optimal precise wind allocation plan with the lowest ventilation operation cost. Performance test results showed that AROA had a significant advantage in comprehensive optimization performance compared to Genetic Algorithm (GA), Simulated Annealing-Improved Particle Swarm Optimization (SA-IPSO), and Monotonic Basin Hopping (MBH). When solving the Ackley function, AROA required fewer iterations to obtain the optimal and average optimal solutions compared to GA, SA-IPSO, and MBH. Case study results showed that the precise wind allocation scheme determined by the AROA-based algorithm resulted in a 50.4% adjustment in the air window area. The left-wing fan power decreased from 131.72 kW to 97.95 kW (a reduction of 25.6%), and the right-wing fan power decreased from 188.22 kW to 146.62 kW (a reduction of 22.1%), achieving a total energy-saving rate of 23.56%. Actual application results in a coal mine demonstrated that the AROA-based algorithm reduced the fan airflow by 11.2%, while the fan air pressure decreased by 10.1%, ultimately achieving a 20.7% reduction in power consumption. The precise wind allocation scheme determined by the AROA-based algorithm reduced fan air pressure by 10.1%, fan airflow by 11.2%, and power by 20.7%.
-
-
表 1 矿井通风网络基本参数
Table 1 Basic parameters of mine ventilation network
分支编号 始节点 末节点 风阻/
(kg·m−7)风量/
(m3∙s−1)风窗面积/m2 是否可调节 e1 5 6 0.13 16 1.37 是 e5 16 17 0.11 100 — 是 e6 7 8 0.13 80 — 是 e14 9 16 0.14 25 1.5 是 e15 13 14 0.08 8 0.68 是 e16 12 15 0.09 3 0.23 是 e22 4 6 0.02 19.28 1.45 是 e23 3 7 1.81 12.72 1.03 是 表 2 巷道精准分风方案结果统计
Table 2 Statistics of precision wind allocation scheme for roadways
分支编号 GA算法 SA−IPSO算法 MBH算法 AROA算法 风量/
(m3∙s−1)调节
阻力/Pa风窗
面积/m2风量/
(m3∙s−1)调节
阻力/Pa风窗
面积/m2风量/
(m3∙s−1)调节
阻力/Pa风窗
面积/m2风量/
(m3∙s−1)调节
阻力/Pa风窗
面积/m2e1 16.00 169 1.49 16.00 169 1.49 16 169 1.39 16 169 1.49 e14 20.00 349 1.30 12.00 385 0.74 8 396 0.49 6 400 0.36 e15 8.00 198 0.69 8.00 169 1.49 8 198 0.69 8 198 0.69 e16 3.00 296 0.21 3.00 296 0.21 3 296 0.21 3 296 0.21 e22 11.48 209 0.96 4.41 211 0.37 2 211 0.17 2 211 0.17 表 3 各算法运行效果比较
Table 3 Comparison of algorithm performance
算法 左翼通风 右翼通风机 节能率/% 功率/kW 风量/(m3·s−1) 风压/Pa 功率/kW 风量/(m3·s−1) 风压/Pa GA 131.72 75 1405 188.22 95 1585 — SA−IPSO 114.07 67 1362 167.21 87 1532 13.05 MBH 103.70 62 1338 154.21 83 1490 5.17 AROA 97.95 60 1306 146.62 81 1457 23.56 表 4 唐安煤矿通风网络调节参数
Table 4 Adjustment parameters for the ventilation network of Tang'an Coal Mine
分支编号 始节点 末节点 风阻/
(kg·m−7)风量/
(m3∙s−1)风窗面积/m2 是否可调节 e7 6 7 0.75 19.88 3.05 是 e8 7 8 0.04 3.76 0.15 是 e22 25 50 0.01 1.77 0.06 是 e30 59 14 0.64 21.88 0.86 是 e40 24 21 0.30 10.40 1.53 是 e46 31 21 0.01 0.20 0.03 是 e49 32 10 0.08 5.91 0.37 是 e51 33 50 0.20 5.09 0.15 是 e59 40 41 0.04 3.34 0.22 是 e62 35 41 0.01 0.27 0.05 是 e66 44 45 0.58 21.16 1.80 是 e68 30 81 0.01 0.20 0.02 是 e69 81 13 0.28 14.00 0.52 是 e70 29 59 0.01 0.20 0.01 是 e83 47 48 0.01 1.69 1.36 是 e85 77 78 0.01 1.71 0.23 是 e86 78 74 0.06 5.01 0.18 是 e88 79 80 0.04 3.68 0.13 是 e95 75 73 0.01 0.20 0.04 是 e97 61 66 0.94 8.37 1.17 是 e108 66 65 0.03 2.20 0.41 是 e112 52 51 0.28 8.71 2.33 是 e115 65 72 2.78 18.57 0.60 是 e117 69 70 0.06 4.31 0.15 是 e118 68 71 0.25 6.68 0.23 是 e121 72 73 2.34 15.40 0.54 是 e124 34 42 0.01 0.20 0.01 是 e127 85 — 30.83 188.35 — 是 表 5 唐安煤矿精准分风方案结果统计
Table 5 Statistics of precision wind allocation scheme for Tang’an Coal Mine
分支
编号风量/
(m3∙s−1)调节阻
力/Pa风窗面
积/m2分支
编号风量/
(m3∙s−1)调节阻
力/Pa风窗面
积/m2e7 2.85 302 0.19 e83 2.27 4 1.22 e8 4.72 699 0.21 e85 13.42 26 2.08 e22 0.62 1367 0.02 e86 14.58 1076 0.52 e30 18.03 928 0.68 e88 2.40 1111 0.09 e40 8.32 41 1.46 e95 3.75 289 0.26 e46 2.7 69 0.38 e97 3.69 1513 0.11 e49 2.34 507 0.12 e108 1.56 34 0.31 e51 2.95 1332 0.10 e112 3.23 15 0.95 e59 2.70 459 0.15 e115 16.56 1353 0.51 e62 3.75 444 0.21 e117 3.51 1362 0.11 e66 — — — e118 1.74 1360 0.06 e68 2.22 192 0.19 e121 7.30 1073 0.26 e69 15.70 944 0.59 e124 2.70 992 0.11 e70 2.25 208 0.18 e127 167.30 — — -
[1] 陈林,谢勇强,罗云勇. 矿井通风网络优化的调节与实现[J]. 昆明冶金高等专科学校学报,2022,38(6):30-35. CHEN Lin,XIE Yongqiang,LUO Yunyong. Research and realization of the optimization of mine ventilation network[J]. Journal of Kunming Metallurgy College,2022,38(6):30-35.
[2] 司俊鸿,王小军,黄欣. 基于改进DE算法的矿井通风网络非线性优化求解[J]. 煤炭工程,2016,48(3):64-67. SI Junhong,WANG Xiaojun,HUANG Xin. A modified differential evolution algorithm for nonlinear optimization solution of mine ventilation network[J]. Coal Engineering,2016,48(3):64-67.
[3] 吴新忠,张芝超,王凯,等. 基于DE−GWO算法的矿井风网风量调节方法[J]. 中南大学学报(自然科学版),2021,52(11):3981-3989. DOI: 10.11817/j.issn.1672-7207.2021.11.019 WU Xinzhong,ZHANG Zhichao,WANG Kai,et al. Method for adjusting air volume of mine ventilation network based on DE-GWO algorithm[J]. Journal of Central South University (Science and Technology),2021,52(11):3981-3989. DOI: 10.11817/j.issn.1672-7207.2021.11.019
[4] 王海宁,彭斌,彭家兰,等. 基于三维仿真的矿井通风系统及其优化研究[J]. 中国安全科学学报,2013,23(9):123-128. DOI: 10.3969/j.issn.1003-3033.2013.09.021 WANG Haining,PENG Bin,PENG Jialan,et al. Study on mine ventilation system and its optimization based on 3D simulation[J]. China Safety Science Journal,2013,23(9):123-128. DOI: 10.3969/j.issn.1003-3033.2013.09.021
[5] 吴新忠,胡建豪,魏连江,等. 矿井通风网络的反向增强型烟花算法优化研究[J]. 工矿自动化,2019,45(10):17-22,67. WU Xinzhong,HU Jianhao,WEI Lianjiang,et al. Research on opposition-based enhanced fireworks algorithm optimization for mine ventilation network[J]. Industry and Mine Automation,2019,45(10):17-22,67.
[6] 宋佳林. IPSO−TS算法在矿井通风网络风量优化中的应用研究[J]. 矿业安全与环保,2022,49(2):78-82. SONG Jialin. Application of IPSO-TS algorithm in air volume optimization of mine ventilation network[J]. Mining Safety & Environmental Protection,2022,49(2):78-82.
[7] 张兴国,周玉. 基于ACPSO算法的矿井通风网络解算研究[J]. 辽宁工程技术大学学报(社会科学版),2018,20(4):305-311. DOI: 10.11955/j.issn.1008-391x.20180410 ZHANG Xingguo,ZHOU Yu. Study on ACPSO algorithm for mine ventilation network[J]. Journal of Liaoning Technical University(Social Science Edition),2018,20(4):305-311. DOI: 10.11955/j.issn.1008-391x.20180410
[8] 郭一楠,王春,杨继超. 基于文化粒子群优化算法的矿井通风网络[J]. 东南大学学报(自然科学版),2013,43(增刊1):48-53. GUO Yinan,WANG Chun,YANG Jichao. Mine ventilation network based on cultural particle swarm optimization algorithm[J]. Journal of Southeast University (Natural Science Edition),2013,43(S1):48-53.
[9] LI Junqiao,LI Yucheng,ZHANG Wei,et al. Multi- objective intelligent decision and linkage control algorithm for mine ventilation[J]. Energies,2022,15(21). DOI: 10.3390/EN15217980.
[10] 韩正化. 基于麻雀搜索算法的矿井风量智能优化调控[D]. 徐州:中国矿业大学,2022. HAN Zhenghua. Intelligent optimal regulation of mine air volume based on sparrow search algorithm[D]. Xuzhou:China University of Mining and Technology,2022.
[11] 厍向阳,史经俭,罗晓霞. 栅格数据模型中附有条件的最短路径算法[J]. 计算机应用,2008(4):856-859. SHE Xiangyang,SHI Jingjian,LUO Xiaoxia. Shortest path algorithm confined to conditions in grid data model[J]. Journal of Computer Applications,2008(4):856-859.
[12] WANG Jinmiao,XIAO Jun,XUE Yan,et al. Optimization of airflow distribution in mine ventilation networks using the modified sooty tern optimization algorithm[J]. Mining,Metallurgy & Exploration,2023,41(1):239-257.
[13] CYMERYS K,OSZUST M. Attraction–repulsion optimization algorithm for global optimization problems[J]. Swarm and Evolutionary Computation,2024. DOI: 10.1016/J.SWEVO.2023.101459.
[14] KENNEDY J,EBERHART R. Particle swarm optimization[C]. International Conference on Neural Networks,Perth,1995:1942-1948.
[15] ASKARI Q,YOUNAS I,SAEED M. Political optimizer:a novel socio-inspired meta-heuristic for global optimization[J]. Knowledge-Based Systems,2020. DOI: 10.1016/j.knosys.2020.105709.
[16] 陈乐天,袁红,孙昌璞. 布朗运动理论及其在复杂气候系统研究中的应用[J]. 物理,2022,51(9):588-601. DOI: 10.7693/wl20220901 CHEN Letian,YUAN Hong,SUN Changpu. Brownian motion theory and its application in the study of complex climate systems[J]. Physics,2022,51(9):588-601. DOI: 10.7693/wl20220901
[17] UR R H,REHAN A,ABDUL-MAJID W,et al. Analysis of Brownian motion in stochastic schrödinger wave equation using sardar sub-equation method[J]. Optik,2023,289. DOI: 10.1016/J.IJLEO.2023.171305.
[18] 曹亚丽,余牧舟,杨俊峰,等. 一种改进的人工蜂群算法研究[J]. 现代电子技术,2020,43(12):133-137,141. CAO Yali,YU Muzhou,YANG Junfeng,et al. Research on an improved artificial bee colony algorithm[J]. Modern Electronics Technique,2020,43(12):133-137,141.
[19] 陈永强,张显涛. 基于NSGA−Ⅱ算法与离散模块梁单元水弹性方法的连接件优化设计分析[J/OL]. 中国舰船研究:1-10 [2024-10-25]. https://doi.org/10.19693/j.issn.1673-3185.04337. CHEN Yongqiang,ZHANG Xiantao. Optimization design of connectors using the discrete-module-beam hydroelasticity method and NSGA-II algorithm[J]. Chinese Journal of Ship Research:1-10 [2024-10-25]. https://doi.org/10.19693/j.issn.1673-3185.04337.
[20] 邵良杉,王振,李昌明. 基于模拟退火与改进粒子群的矿井通风优化算法[J]. 系统仿真学报,2021,33(9):2085-2094. SHAO Liangshan,WANG Zhen,LI Changming. Optimization algorithm of mine ventilation based on SA-IPSO[J]. Journal of System Simulation,2021,33(9):2085-2094.
[21] 孟思彤. 基于单调盆地跳跃算法的矿井风量优化研究[D]. 阜新:辽宁工程技术大学,2023. MENG Sitong. Study on optimization of mine air volume based on monotone basin jump algorithm[D]. Fuxin:Liaoning Technical University,2023.
-
期刊类型引用(8)
1. 陈梓华,马占元,李敬兆. 基于RNN的煤矿安全隐患信息关键语义智能提取系统. 煤炭工程. 2021(03): 185-189 . 百度学术
2. 何桥,许金. 基于信息熵—集对分析的煤矿隐患排查治理风险评估模型. 能源与环保. 2020(01): 56-59 . 百度学术
3. 何桥,许金,陈清. 煤矿安全隐患风险评价研究. 工矿自动化. 2019(08): 48-53+59 . 本站查看
4. 张俭让,黄玉鑫,闫振国,张磊,霍小泉. 煤矿安全生产标准化信息管理系统设计. 工矿自动化. 2019(12): 81-85 . 本站查看
5. 郝丹丹,郭景峰,王燕君. 基于k-shell的社区发现算法研究. 河北省科学院学报. 2018(02): 18-29 . 百度学术
6. 吴飞. 煤矿企业隐患排查治理信息管理系统的研究与设计. 中国煤炭. 2018(05): 74-77 . 百度学术
7. 张成才. 关于煤矿重大隐患特性及治理体系的分析. 内蒙古煤炭经济. 2018(21): 102+138 . 百度学术
8. 李斌,郑淇,华圣元,徐蓉,李欣,赵克勤. 基于四元联系数的中医四诊与银屑病疗效关系研究. 辽宁中医杂志. 2018(11): 2241-2246 . 百度学术
其他类型引用(12)