钢丝绳断丝漏磁场分布规律三维动态仿真分析

魏明江, 战卫侠, 尚允坤, 刘继兵, 刘耀

魏明江,战卫侠,尚允坤,等. 钢丝绳断丝漏磁场分布规律三维动态仿真分析[J]. 工矿自动化,2025,51(2):148-154, 162. DOI: 10.13272/j.issn.1671-251x.2024100013
引用本文: 魏明江,战卫侠,尚允坤,等. 钢丝绳断丝漏磁场分布规律三维动态仿真分析[J]. 工矿自动化,2025,51(2):148-154, 162. DOI: 10.13272/j.issn.1671-251x.2024100013
WEI Mingjiang, ZHAN Weixia, SHANG Yunkun, et al. Three-dimensional dynamic simulation analysis of magnetic flux leakage distribution in broken strands of wire ropes[J]. Journal of Mine Automation,2025,51(2):148-154, 162. DOI: 10.13272/j.issn.1671-251x.2024100013
Citation: WEI Mingjiang, ZHAN Weixia, SHANG Yunkun, et al. Three-dimensional dynamic simulation analysis of magnetic flux leakage distribution in broken strands of wire ropes[J]. Journal of Mine Automation,2025,51(2):148-154, 162. DOI: 10.13272/j.issn.1671-251x.2024100013

钢丝绳断丝漏磁场分布规律三维动态仿真分析

基金项目: 山东省自然科学基金项目(ZR2021ME026,ZR2020QE158)。
详细信息
    作者简介:

    魏明江(1998—),男,山东枣庄人,硕士研究生,主要研究方向为钢丝绳损伤无损检测,E-mail:2797628131@qq.com

  • 中图分类号: TD532

Three-dimensional dynamic simulation analysis of magnetic flux leakage distribution in broken strands of wire ropes

  • 摘要:

    目前钢丝绳断丝漏磁场分布规律的仿真研究主要使用有限元静态磁场仿真模型,该模型中钢丝绳与损伤检测仪器之间是相对静止状态,而现场检测时钢丝绳与损伤检测仪器之间有相对运动,导致仿真获得的漏磁场与现场检测的漏磁场存在偏差。针对上述问题,采用Ansoft Maxwell电磁仿真软件建立了钢丝绳三维动态磁场仿真模型,仿真钢丝绳与损伤检测仪器之间相对运动状态下的断丝漏磁场,分析了不同断口宽度、断丝数量及提离值对断丝轴向漏磁场峰峰值的影响规律。仿真结果表明:三维动态磁场仿真模型可以模拟钢丝绳与损伤检测仪器之间的相对运动状态,仿真计算的漏磁场含有断丝漏磁场和钢丝绳绳股漏磁场,更接近实际漏磁场;断丝轴向漏磁场峰峰值随着断口宽度的增加呈先增大后减小的趋势,断丝轴向漏磁场峰峰值变化与断丝数量呈正相关、与提离值呈负相关。通过建立三维磁偶极子模型对断丝轴向漏磁场峰峰值进行分析,验证了三维动态磁场仿真模型分析结果的正确性。

    Abstract:

    Current simulation studies on the distribution pattern of magnetic flux leakage (MFL) in broken strands of wire ropes primarily use finite element static magnetic field simulation models. In these models, the wire rope and the damage detection instrument remain relatively stationary. However, during actual field inspections, there is relative motion between the wire rope and the detection instrument, leading to deviations between the simulated and actual MFL signals. To address this issue, this study established a three-dimensional dynamic magnetic field simulation model using Ansoft Maxwell electromagnetic simulation software. The model simulated the MFL of broken wires under relative motion conditions and analyzed the effects of different break widths, numbers of broken wires, and lift-off values on the peak-to-peak axial MFL. The simulation results show that the three-dimensional dynamic magnetic field simulation model can replicate the relative motion between the wire rope and the detection instrument. The simulated MFL include both the MFL caused by broken wires and that caused by wire strands, making it more representative of actual leakage fields. The peak-to-peak axial MFL initially increases and then decreases as the break width increases. Additionally, the peak-to-peak axial MFL exhibit a positive correlation with the number of broken wires and a negative correlation with the lift-off value. The accuracy of the three-dimensional dynamic magnetic field simulation model is further validated by establishing a three-dimensional magnetic dipole model to analyze the peak-to-peak axial MFL.

  • 图  1   钢丝绳漏磁无损检测原理

    Figure  1.   Principle of magnetic flux leakage(MFL) non-destructive testing of wire rope

    图  2   钢丝绳轴向漏磁场磁感应强度

    Figure  2.   Magnetic induction intensity of axial leakage magnetic field in wire rope

    图  3   励磁结构模型

    Figure  3.   Magnetization structure model

    图  4   仿真运动的初始位置和结束位置

    Figure  4.   Initial and final positions of simulated motion

    图  5   钢丝绳磁通量密度云图

    Figure  5.   Magnetic flux density cloud map of wire rope

    图  6   通过三维动态磁场仿真模型得到的不同断口宽度下断丝轴向漏磁场磁感应强度

    Figure  6.   Magnetic induction intensity of axial leakage magnetic field at different fracture widths of broken strands obtained from the three-dimensional dynamic magnetic field simulation model

    图  7   通过三维动态磁场仿真模型得到的断丝轴向漏磁场峰峰值随断口宽度变化规律

    Figure  7.   Variation patteen of peak-to-peak value of axial leakage magnetic field with fracture widths of broken strands obtained from three-dimensional dynamic magnetic field simulation model

    图  8   通过三维动态磁场仿真模型得到的不同断丝数量下轴向漏磁场磁感应强度

    Figure  8.   Magnetic induction intensity of axial leakage field under different number of broken wires obtained by three-dimensional dynamic magnetic field simulation model

    图  9   通过三维动态磁场仿真模型得到的断丝轴向漏磁场峰峰值随断丝数量变化规律

    Figure  9.   Peak-peak value variation law of axial leakage magnetic field with the number of broken wires obtained by three-dimensional dynamic magnetic field simulation model

    图  10   通过三维动态磁场仿真模型得到的不同提离值下轴向漏磁场磁感应强度

    Figure  10.   Magnetic induction intensity of axial leakage field under different lifting values obtained by three-dimensional dynamic magnetic field simulation model

    图  11   通过三维动态磁场仿真模型得到的断丝轴向漏磁场峰峰值随提离值变化规律

    Figure  11.   Peak-peak value variation law of axial leakage magnetic field with lifting values obtained by three-dimensional dynamic magnetic field simulation model

    图  12   三维磁偶极子模型

    Figure  12.   Three-dimensional magnetic dipole model

    图  13   通过三维磁偶极子模型得到的断丝轴向漏磁场磁感应强度

    Figure  13.   Magnetic induction intensity of axial leakage field of broken wire obtained by three-dimensional magnetic dipole model

    图  14   通过三维磁偶极子模型得到的断丝轴向漏磁场峰峰值随断口宽度变化规律

    Figure  14.   Peak-peak value variation law of axial leakage magnetic field with fracture widths obtained by three-dimensional magnetic dipole model

    图  15   通过三维磁偶极子模型得到的断丝轴向漏磁场峰峰值随断丝数量变化规律

    Figure  15.   Peak-peak value variation law of axial leakage magnetic field with the number of broken wires obtained by three-dimensional magnetic dipole model

    图  16   通过三维磁偶极子模型得到的断丝轴向漏磁场峰峰值随提离值变化规律

    Figure  16.   Peak-peak value variation law of axial leakage magnetic field with lifting values obtained by three-dimensional magnetic dipole model

    表  1   不同断丝参数设置

    Table  1   Settings for different broken strands parameters

    断丝数量/根断丝截面长度/mm断丝深度/mm
    122
    242
    362
    482
    下载: 导出CSV
  • [1] 谭继文,战卫侠,文妍. 钢丝绳安全检测原理与技术[M]. 北京:科学出版社,2009.

    TAN Jiwen,ZHAN Weixia,WEN Yan. Principle and technology of wire rope safety detection[M]. Beijing:Science Press,2009.

    [2] 张义清. 钢丝绳断丝损伤检测与定量识别研究[D]. 青岛:青岛理工大学,2021.

    ZHANG Yiqing. Research on detection and quantitative identification of broken wires of the steel wire rope[D]. Qingdao:Qingdao University of Technology,2021.

    [3] 战卫侠. 钢丝绳断丝损伤信号处理及定量识别方法研究[D]. 青岛:青岛理工大学,2013.

    ZHAN Weixia. Research on signal process and quantitative recognition method of broken wires in wire rope[D]. Qingdao:Qingdao University of Technology,2013.

    [4]

    MAZUREK P. A comprehensive review of steel wire rope degradation mechanisms and recent damage detection methods[J]. Sustainability,2023,15(6). DOI: 10.3390/su15065441.

    [5]

    SHAMSUDIN S R,HARUN M,MOHD NOOR M,et al. Failure analysis of crane wire rope[J]. Materials Science Forum,2015,819:467-472. DOI: 10.4028/www.scientific.net/MSF.819.467

    [6] 王红尧. 煤矿提升钢丝绳在线检测关键技术研究[D]. 徐州:中国矿业大学,2009.

    WANG Hongyao. Key technique of on-line detection for coal mine-hoist wire rope[D]. Xuzhou:China University of Mining and Technology,2009.

    [7] GB/T 5972—2023 起重机 钢丝绳 保养、维护、检验和报废[S].

    GB/T 5972-2023 Cranes-wire ropes-care and maintenance,inspection and discard[S].

    [8] GB/T 9075—2008 索道用钢丝绳检验和报废规范[S]. GB/T 9075-2008 Code for examination and discard of ropes for ropeway[S].
    [9]

    ZHOU Ping,ZHOU Gongbo,ZHU Zhencai,et al. A review of non-destructive damage detection methods for steel wire ropes[J]. Applied Sciences,2019,9(13). DOI: 10.3390/app9132771.

    [10] 李国勇. 钢丝绳实时在线检测系统研发[D]. 北京:北京邮电大学,2010.

    LI Guoyong. The research of online detection technology of wire rope[D]. Beijing:Beijing University of Posts and Telecommunications,2010.

    [11]

    YAN Xiaolan,ZHANG Donglai,PAN Shimin,et al. Online nondestructive testing for fine steel wire rope in electromagnetic interference environment[J]. NDT & E International,2017,92:75-81.

    [12] 任建浩,陈实,薛家杰,等. 基于1D−CNN−SVM的钢丝绳损伤识别方法[J]. 无损检测,2024,46(6):24-29. DOI: 10.11973/wsjc202406005

    REN Jianhao,CHEN Shi,XUE Jiajie,et al. Wire rope damage identification method based on 1D-CNN-SVM[J]. Nondestructive Testing,2024,46(6):24-29. DOI: 10.11973/wsjc202406005

    [13]

    FENG Bo,WU Jianbo,TU Hongming,et al. A review of magnetic flux leakage nondestructive testing[J]. Materials,2022,15(20). DOI: 10.3390/ma15207362.

    [14]

    MANDACHE C,CLAPHAM L. A model for magnetic flux leakage signal predictions[J]. Journal of Physics D:Applied Physics,2003,36(20):2427-2431. DOI: 10.1088/0022-3727/36/20/001

    [15] 曹印妮. 基于漏磁成像原理的钢丝绳局部缺陷定量检测技术研究[D]. 哈尔滨:哈尔滨工业大学,2007.

    CAO Yinni. Study on wire rope local flaw quantitative testing basde on mfl imaging principle[D]. Harbin:Harbin Institute of Technology,2007.

    [16]

    SELEZNYOVA K,STRUGATSKY M,KLIAVA J. Modelling the magnetic dipole[J]. European Journal of Physics,2016,37(2). DOI: 10.1088/0143-0807/37/2/025203.

    [17] 窦连城,战卫侠. 钢丝绳断丝损伤漏磁场计算与仿真研究[J]. 工矿自动化,2020,46(10):87-91.

    DOU Liancheng,ZHAN Weixia. Calculation and simulation research on leakage magnetic field of broken wire damage of wire rope[J]. Industry and Mine Automation,2020,46(10):87-91.

    [18] 李登蓬. 基于聚磁技术的钢丝绳损伤电磁检测传感器研究[D]. 济南:济南大学,2019.

    LI Dengpeng. Research on electromagnetic detection sensor for wire rope damage based on magnetic concentration technology[D]. Jinan:University of Jinan,2019.

    [19] 郭永亮. 基于漏磁检测的钢丝绳断丝检测方法及系统实现[D]. 成都:电子科技大学,2021.

    GUO Yongliang. Method and system realization of broken wire of steel wire rope based on magnetic flux leakage detection[D]. Chengdu:University of Electronic Science and Technology of China,2021.

    [20] 朱良. 基于磁特性的钢丝绳断丝损伤定量检测研究[D]. 青岛:青岛理工大学,2019.

    ZHU Liang. Research on quantitative detection of breaken wire damage of wire ropes based on magnetic characteristics[D]. Qingdao:Qingdao University of Technology,2019.

    [21] 华晋伟,王兵,邵帅,等. 基于漏磁原理的钢丝绳无损检测技术研究[J]. 仪表技术与传感器,2014(5):38-39,105. DOI: 10.3969/j.issn.1002-1841.2014.05.012

    HUA Jinwei,WANG Bing,SHAO Shuai,et al. Research of examining steel wire with no damaging method[J]. Instrument Technique and Sensor,2014(5):38-39,105. DOI: 10.3969/j.issn.1002-1841.2014.05.012

    [22] 刘国强,赵凌志,蒋继娅. Ansoft工程电磁场有限元分析[M]. 北京:电子工业出版社,2005.

    LIU Guoqiang,ZHAO Lingzhi,JIANG Jiya. Ansoft engineering electromagnetic field finite element analysis[M]. Beijing:Publishing House of Electronics Industry,2005.

  • 期刊类型引用(1)

    1. 丁自伟,高成登,景博宇,黄兴,刘滨,胡阳,桑昊旻,徐彬,秦立学. 基于机器学习的煤系地层TBM掘进巷道围岩强度预测. 西安科技大学学报. 2025(01): 49-60 . 百度学术

    其他类型引用(0)

图(16)  /  表(1)
计量
  • 文章访问数:  30
  • HTML全文浏览量:  3
  • PDF下载量:  4
  • 被引次数: 1
出版历程
  • 收稿日期:  2024-10-08
  • 修回日期:  2025-02-25
  • 网络出版日期:  2025-03-10
  • 刊出日期:  2025-02-14

目录

    /

    返回文章
    返回