Fault line selection method for resonant grounding systems based on DTW-Hilbert and improved K-means
-
摘要:
受消弧线圈、过渡电阻、环境噪声等因素的影响,谐振接地系统故障信号特征微弱,且基于单一判据构成的故障选线方法难以保证选线结果的可靠性。针对上述问题,提出了一种基于动态时间弯曲(DTW)距离算法−Hilbert包络能量与改进K−means聚类算法的谐振接地系统故障选线方法。基于故障线路与健全线路波形相似度差距较大的原理,采用DTW距离算法定量刻画各线路电流序列之间的波形相似程度;为避免单一判据可能存在的选线盲区,基于故障线路与健全线路的能量系数区分度明显的原理,引入Hilbert包络能量衡量暂态零序电流信号中的高频分量幅值;为增强所提选线方法的数据处理能力与效率,采用改进K−means聚类算法对故障特征数据集进行分类处理,将各条线路的故障信息整理为故障数据集,作为改进K−means聚类算法的输入,聚类算法输出各条线路的聚类标签,依据聚类标签判定故障线路。仿真实验结果表明:① 该方法在面对不同过渡电阻、不同故障距离、不同故障初相角、不同线路结构等工况时,均可确保选线结果的准确性;② 相较于传统的K−means聚类算法,改进K−means聚类算法将选线准确率提升了3.4%。现场测试数据表明:该方法具有较强的抗噪声干扰能力,能够在强噪声环境下将保护的耐过渡电阻能力提升至3 000 Ω。
-
关键词:
- 谐振接地系统 /
- 故障选线 /
- 单相接地故障 /
- 动态时间弯曲距离算法 /
- Hilbert包络能量 /
- 高频分量 /
- 聚类算法
Abstract:Due to the influence of factors such as arc suppression coils, transition resistance, and environmental noise, the fault signal characteristics in resonant grounding systems are weak. Furthermore, fault line selection methods based on a single criterion often fail to ensure the reliability of the results. To address these issues, this paper proposed a fault line selection method for resonant grounding systems based an dynamic time warping (DTW) distance algorithm-Hilbert envelope energy, and improved K-means clustering algorithm. Based on the principle that the waveform similarity between the faulted and healthy lines differs significantly, the DTW distance algorithm was first employed to quantitatively measure the similarity between current waveforms of each line. To avoid the potential blind spots of a single criterion, Hilbert envelope energy was introduced to measure the high-frequency components in the transient zero-sequence current signals, based on the principle that the energy coefficient distinguishes faulted and healthy lines clearly. Additionally, to enhance the data processing capability and efficiency of the proposed method, the improved K-means clustering algorithm was applied to classify the fault feature dataset. The fault data from each line were organized into a fault dataset, which served as the input to the improved K-means algorithm. The clustering algorithm output the cluster labels for each line, and the fault line was determined based on the cluster labels. Simulation results showed that: ① The method ensured accurate line selection results under various conditions, such as different transition resistances, fault distances, fault initial phase angles, and line structures. ② Compared with the traditional K-means clustering algorithm, the improved K-means algorithm improved the line selection accuracy by 3.4%. Field test data demonstrated the strong noise immunity of the method, improving the protection's tolerance to transition resistance up to 3 000 Ω in a high-noise environment.
-
0. 引言
谐振接地系统能够区分瞬时性接地故障与永久性接地故障,具有较高的供电可靠性,因而在我国中压配电网与煤矿配电网得到广泛应用。由谐振接地系统衍生出的单相接地故障的保护问题,一直是学术界的热点争议话题[1-2]。
单相接地故障是配电网中最为常见的一类故障,约占总故障的80%以上。以往配电网运行规范要求系统发生单相接地故障后,可带故障运行1~2 h[3],对保护的故障处置能力要求较低。煤矿配电网的安全运行直接关系到生产人员的人身安全,因此要求尽可能快速辨识故障支路。2017年3月,国家电网有限公司发布Q/GDW 10370—2016《配电网技术导则》,要求对永久性故障快速隔离、瞬时性故障安全消弧,对保护的故障处理能力提出了更高的要求[4]。受消弧线圈、过渡电阻、环境噪声、运行方式、煤矿井下空气湿度较大[5]等因素的影响,现有保护方法在实际工况下均难以保证中压配电网或煤矿配电网选线结果的准确性[6-7]。因此,如何在谐振接地系统发生故障后,准确、可靠地实现对故障线路的辨识,对推进智能配电网与现代化煤矿建设具有重要意义。
按切入点的不同,将现有故障选线方法划分为稳态故障特征法[8-10]、外加信号法[11-12]、暂态故障特征法[13-14]等。典型的稳态特征法有五次谐波法[8]、零序导纳法[9]、负序分量法[10]。稳态故障特征法易受线路对地电容、运行方式等因素影响,故障特征微弱,选线效果往往不佳。外加信号法通过使用特定设备向系统注入一定频率的信号,人为制造一定扰动,以实现故障选线,但该类方法需要增加信号注入与检测设备,成本较高,且注入信号还可能对电能质量产生不利影响。暂态故障特征丰富且不受消弧线圈过补偿的影响,因而越来越多的学者将研究重点转移到对暂态故障特征的分析,并在分析过程中与不同的信号处理方法相结合。文献[13]利用小波包对暂态特征信号进行分解,构建相应的贝叶斯分类器,可快速判断故障,但小波函数滤波去噪效果受小波基、阈值等参数的影响,本身具有一定的局限性,结果可靠性较低。文献[14]采用变分模态分解(Varational Mode Decomposition,VMD)克服了经验模态分解(Empirical Mode Decomposition,EMD)模态混淆问题,但需要预先设定分解层数,否则将出现信号欠分解或过分解现象。上述研究方法大多采用单一选线判据,未能深度挖掘与利用暂态过程蕴含的故障信息,难以保证选线结果的可靠性。
为进一步提升谐振接地系统故障选线的准确率与可靠性,本文提出了一种融合动态时间弯曲(Dynamic Time Warping,DTW)距离算法与Hilbert包络能量的谐振接地系统故障选线方法。首先采用DTW距离算法定量刻画各线路电流序列之间的波形相似程度,并采用Hilbert包络能量衡量暂态零序电流信号中的高频分量幅值;然后,引入改进K−means聚类算法对故障特征数据集进行分类处理,以增强所提选线方法的数据处理能力与效率;最后,在电磁暂态仿真软件(Power Systems Computer Aided Design,PSCAD)中搭建10 kV配电网仿真模型,对所提方法的可行性与准确性进行验证。
1. DTW距离算法
谐振接地系统发生单相接地故障时,故障线路与健全线路暂态零序电流极性相反[15],但当过渡电阻阻值较大或环境噪声干扰严重时,通过直接比较各线路暂态零序电流的极性难以保证选线结果的准确性。
电流极性相反可以刻画为故障初始时刻各线路电流序列之间的相似程度不同,即故障线路与健全线路之间波形相似程度低,而健全线路与健全线路之间波形相似程度高。因此,可将问题转换为表征各线路暂态电流序列之间的相似程度问题。DTW距离算法能够衡量数据长度不同的两序列间的相似性,且具有耐同步误差性较强、鲁棒性好等特质[16]。因此,本文采用DTW距离算法定量描述暂态零序电流波形特征。
DTW距离算法的核心思想是基于动态规划探寻一条累计距离最短的最优弯曲路径使两序列匹配[17],该最短累计路径即为DTW距离。
1) 依据2个序列各数据点可能存在的关系,构建序列A和序列B之间的距离矩阵${\boldsymbol{W}} $。
$$ {\boldsymbol{W}} = \left[ {\begin{array}{*{20}{c}} {d({a_1},{b_1})}&{d({a_1},{b_2})}& \cdots &{d({a_1},{b_Y})} \\ {d({a_2},{b_1})}&{d({a_2},{b_2})}& \cdots &{d({a_2},{b_Y})} \\ \vdots & \vdots & \vdots & \vdots \\ {d({a_X},{b_1})}&{d({a_X},{b_2})}& \cdots &{d({a_X},{b_Y})} \end{array}} \right] $$ (1) 式中:$ d({a_n},{b_m}) $为序列A的数据点${a_n}$与序列B的数据点${b_m}$之间的距离,n=1,2,···,X,m=1,2,···,Y;X,Y分别为序列A,B中数据点的个数。
2) 定义一个表示弯曲路径的集合P,记为$P = \left\{ {{p_1},{p_2}, \cdots ,{p_k}} \right\}$,pr为P的第$r$个元素,${p_r} = {(n,m)_r}$,r=1,2,···,k,k为P中元素个数。pr对应路径上第$r$个元素的坐标位置,表示2个序列中${a_n}$和${b_m}$互相匹配。两点间的距离为
$$ d({p_r}) = d({a_n},{b_m}) $$ (2) 3) 鉴于2个序列中元素之间可能存在一对多的对应关系,因此序列A和序列B之间满足以上约束条件的路径可能不止1条,但其中存在1条最优路径使总弯曲距离最短,选择该路径作为2个序列间的DTW距离。
$$ {\text{DTW}}(A,B) = \min \sum\limits_{r = 1}^k {d({p_r})} $$ (3) 利用动态规划构建累加矩阵${\boldsymbol{D}} $,求解序列A与序列B之间的DTW距离:
$$ \begin{split} & {\text{DTW}}(A,B) = {\boldsymbol{D}}(n,m) = {w_{nm}} + \\& \qquad \min \left\{ {{\boldsymbol{D}}(n - 1,m)}, {{\boldsymbol{D}}(n,m - 1)}, {{\boldsymbol{D}}(n - 1,m - 1)} \right\} \end{split} $$ (4) 式中:${w_{nm}}$为${a_n}$和${b_m}$之间的对齐距离;${\boldsymbol{D}}(0,0) = 0$,${\boldsymbol{D}}(X,0) = {\boldsymbol{D}}(0,Y) = + \infty $。
配电网发生单相接地故障后,采集各线路的零序电流信号。为了保证信号之间具备可比较性,信号序列预先经历归一化处理,成为无量纲的标准数据。
$$ {L_n} = \frac{{{l_n} - \min l}}{{\max l - \min l}} $$ (5) 式中:$ {L_n} $为第n条线路归一化后的数据;$ {l_n} $为第n条线路的原始数据;min l为所有数据点中的最小值;max l为所有数据点中的最大值。
对N条线路归一化后的电流序列两两之间进行DTW距离的计算,形成DTW距离矩阵${\boldsymbol{D}} $,即累加矩阵${\boldsymbol{D}} $。
$$ {\boldsymbol{D}} = \left[ {\begin{array}{*{20}{c}} {d({L_1},{L_1})}&{d({L_1},{L_2})}& \cdots &{d({L_1},{L_N})} \\ {d({L_2},{L_1})}&{d({L_2},{L_2})}& \cdots &{d({L_2},{L_N})} \\ \vdots & \vdots & \vdots & \vdots \\ {d({L_N},{L_1})}&{d({L_N},{L_2})}& \cdots &{d({L_N},{L_N})} \end{array}} \right] $$ (6) 式中:$ d({L_n},{L_m}) $为线路${L_n}$和线路${L_m}$零序电流序列之间的DTW距离;LN为第N条线路。
根据式(6)可知,距离矩阵${\boldsymbol{D}} $呈对称分布,且主对角线上的元素均为0。序列之间的差异性越大,映射为DTW距离越大;反之,则DTW距离越小。故障线路与健全线路暂态零序电流序列之间的差异大即DTW距离大,健全线路与健全线路之间的差异小即DTW距离小。
将矩阵${\boldsymbol{D}} $中每列元素进行加和计算,得到动态时间弯曲距离向量$ {\boldsymbol{z}} $,可实现对矩阵${\boldsymbol{D}} $降阶简化。
$$ {{z}} = {\left[ {\begin{array}{*{20}{c}} {{{\boldsymbol{z}}_1}}&{{{\boldsymbol{z}}_2}}& \cdots &{{{\boldsymbol{z}}_N}} \end{array}} \right]^T} $$ (7) 式中$ {{{z}}_m} $为距离矩阵${\boldsymbol{D}} $中第m列元素的代数和,m=1,2,···,N。
向量$ {{z}} $中最大元素值对应的支路即为故障支路。为便于后续操作,定义DTW距离系数为
$$ \rho = \frac{1}{{{{\boldsymbol{z}}_{\max }}}}\left[ {\begin{array}{*{20}{c}} {{{\boldsymbol{z}}_1}}&{{{\boldsymbol{z}}_2}}& \cdots &{{{\boldsymbol{z}}_N}} \end{array}} \right] $$ (8) 式中${{\boldsymbol{z}}_{\max }}$为向量$ {\boldsymbol{z}} $中的最大元素。
对每条线路之间的$ {\boldsymbol{z}} $标准化后,故障支路的距离系数$\rho = 1$,且大于所有健全线路的距离系数。
2. Hilbert包络能量
依据基尔霍夫电流定律可知,各条健全线路暂态零序电流中包含的高频分量都经接地点流入故障线路,故障线路中高频分量的幅值大于健全线路,且无论故障初相角如何变化,暂态零序电流中总含有一定的高频分量[18]。因此,可利用高频分量构建选线判据。本文采用VMD获取暂态零序电流信号中的高频分量,并选用Hilbert包络能量衡量高频分量幅值。
任一固有模态分量的Hilbert变换结果为
$$ {\hat c_i}(t) = \frac{1}{{\text{π}} }\int_{ - \infty }^{ + \infty } {\frac{{{c_i}(\tau )}}{{t - \tau }}} {\mathrm{d}}\tau $$ (9) 式中:t为采样时刻;${c_i}(t)$为第i个固有模态分量;τ为积分变量。
解析信号${v_i}(t)$由固有模态分量${c_i}(t)$及其Hilbert变换值$ {\hat c_i}(t) $构成。
$$ {v_i}(t) = {c_i}(t) + {\text{j}}{\hat c_i}(t) = {\alpha _i}(t){{{\mathrm{exp}}} ({{\text{j}}{\phi _i}\left( t \right)})} $$ (10) 式中$ {\alpha _i}(t) $,$ {\phi _i}\left( t \right) $分别为瞬时幅值与瞬时相位角。
固有模态分量${c_i}(t)$的Hilbert包络能量为
$$ {S_n} = \sum\limits_{t = {t_0}}^T {\alpha _{i}^2} (t) $$ (11) 式中:$ {S_n} $为线路Ln的包络能量;t0为采样起始时刻;T为采样终止时刻。
对包络能量进行归一化处理,建立能量系数:
$$ {h_n} = {{{S_{ n}}}}\left/{{\displaystyle\sum\limits_{n = 1}^N {{S_{ n}}} }}\right. $$ (12) 3. 改进K−means聚类算法
为解决人工区分故障与健全线路存在的效率低下问题,增强所提选线方法的数据处理能力与效率,采用改进K−means聚类算法[19-21]对数据进行分类。
3.1 初始聚类中心的改进
K−means聚类算法[22]在数据集中无规律抓取初始聚类中心,可能使该算法无法达到全局最优解,从而陷入局部最优解,导致聚类结果与数据集的实际分布相距甚远,所以需要对初始聚类中心的选取进行优化。具体优化步骤如下。
1) 无规律地抓取数据集中的一个数据元素设为初始聚类中心。
2) 计算每个数据元素与当前已选定的聚类中心之间的最短距离,并计算每个数据元素当选为下一个聚类中心的概率,遵循轮盘法挑选下一个聚类中心。
3) 重复操作步骤2),直至选择出M个初始聚类中心。
3.2 更新聚类中心的优化
K−means聚类算法采用计算数据样本均值的手段来更新聚类中心,在计算新的聚类中心时,容易产生孤立数据,从而引起聚类失真。为避免上述现象,本文选用类中的中心点来代替均值点。中心点定义为原始数据集真实存在的样本点,且该点与类中其他数据点的距离最小。中心点在类中的位置最集中,与其他数据元素的平均差异最小,因此在面对离群数值干扰时仍能够保持较高的鲁棒性。对更新聚类中心计算方法进行改进的具体流程如下。
1) 选取$M$个初始聚类中心。
2) 将剩余数据划分到距离该数据点最近的中心点所代表的类内,并计算此时的聚类质量$E$。
$$ E = \sum\limits_{i = 1}^M {\sum\limits_{q \in {f_i}} {\left| {q - {o_i}} \right|} } $$ (13) 式中:$q$为类${f_i}$内的数据元素;${o_i}$为聚类中心。
3) 从各个类内依次选取非中心数据样本${o_l}$(l≠i)替换中心点${o_i}$,计算该非中心数据样本代替中心点得到的聚类质量$E'$。
4) 计算替换中心点前后聚类质量的差异值$\Delta E = E' - E $,如果$\Delta E \lt 0$,则用${o_l}$代替${o_i}$作为新的中心点,否则保持原来的中心点不变。
5) 循环执行步骤2)—步骤4),直至迭代更新后的中心点不再改变,聚类结果无需再做调整。
改进后的K−means聚类算法流程如图1所示。因配电网发生单相接地故障后,所有线路有且仅有“健全”和“故障”2种状态,提取的特征量也仅有2种类别,因此簇数M设定为2。
4. 故障选线方法流程
基于DTW−Hilbert与改进K−means聚类算法的谐振接地系统故障选线方法流程如下。
1) 判断系统零序电压是否大于额定电压的0.15倍,若是则判定系统发生单相接地故障,启动选线流程。
2) 采集配电网线路首端的暂态零序电流信号,设置采样频率为10 kHz。
3) 选定故障发生前的1/4工频周波到故障发生后的3/4工频周波作为故障特征提取区段。计算所有线路暂态零序电流两两之间的DTW距离,进而求取线路Ln的距离系数$\rho_n $;利用VMD算法对各条线路零序电流进行二层分解,计算高频分量的Hilbert包络能量,进而求取线路Ln的能量系数$ {h_n} $。
4) 将各条线路的故障信息$({\rho _n},{h_n})$整理为故障数据集,作为改进K−means聚类算法的输入,设置聚类类数为2,对所有数据进行聚类,聚类算法输出各条线路的聚类标签,依据聚类标签判定故障线路。
5. 仿真实验验证
5.1 仿真模型搭建与参数设置
在PSCAD/EMTDC中搭建如图2所示的10 kV配电网仿真系统。该系统由无穷大电源G、35/10.5 kV降压变压器、接地变压器TZ、消弧线圈、配电变压器、接地过渡电阻R、10 kV母线及4条出线L1—L4组成。其中,消弧线圈按−8%配置,RL为消弧线圈的有功损耗等值电阻,线路参数见表1。
表 1 单位长度线路参数Table 1. Line parameters per unit length线路类型 相序 电阻/(Ω·km−1) 电感/(mH·km−1) 电容/(μF·km−1) 架空线 正序 0.170 1.216 0.098 零序 0.232 5.469 0.006 电缆线 正序 0.270 0.255 0.339 零序 2.700 1.016 0.275 5.2 选线方法验证
5.2.1 DTW距离算法实验
为验证所提方法的可行性,分别在线路L1—L3设置4组不同故障工况:① L1距离母线2 km处发生过渡电阻为70 Ω的单相接地故障,故障初相角为0。② L2距离母线6 km处发生过渡电阻为300 Ω的单相接地故障,故障初相角为45°。③ L2距离母线4 km处发生过渡电阻为500 Ω的单相接地故障,故障初相角为0。④ 线路L3距离母线2 km处发生过渡电阻为550 Ω的单相接地故障,故障初相角为60°。计算每条线路故障后的距离系数,结果如图3所示。
5.2.2 Hilbert包络能量实验
为验证所提方法的可行性,分别在线路L1,L2设置4组不同故障工况:① L2距离母线3 km处发生过渡电阻为100 Ω的单相接地故障,故障初相角为60°。② L2距离母线3 km处发生过渡电阻为100 Ω的单相接地故障,故障初相角为0。③ L1距离母线2 km处发生过渡电阻为500 Ω的单相接地故障,故障初相角为90°。④ L1距离母线2 km处发生过渡电阻为550 Ω的单相接地故障,故障初相角为90°。计算每条线路故障后的能量系数,结果如图4所示。
由图4可看出,不同故障工况下故障线路的能量系数均远大于健全线路。可见,基于各线路零序电流高频分量幅值的能量系数判据能够正确体现健全线路与故障线路之间的差异。
由图3可知,不同故障工况下,故障线路的DTW距离系数均为1,且大于健全线路的DTW距离系数。因此,基于不同线路零序电流波形相似度差异的距离系数能够正确度量健全线路与故障线路之间的差异。
5.3 选线结果分析
通过大量仿真实验,模拟不同的故障状况,获取暂态零序电流信号并从中提取故障特征。由于文章篇幅有限,仅对部分案例进行展示,具体见表2。可看出在不同故障工况下,所提方法均具有较强适用性,能够正确区分故障线路与健全线路,与前文理论分析一致。
通过仿真获取大量不同故障条件下的故障特征量,作为改进K−means聚类算法的输入数据集,将各线路的距离系数和能量系数映射到二维平面上进行聚类分析,结果如图5所示。可看出聚类算法成功地将故障数据分成了2类,一类为“故障簇”,一类是“健全簇”。根据聚类分析能够实现故障线路的判定,可见使用该方法进行故障选线是可行的。
表 2 部分案例的故障特征量及选线结果Table 2. Fault characteristics and line selection results for selected cases故障线路/故障位置/
过渡电阻/故障初相角故障特征量[$ \rho_n,h_n $] 聚类标签 选线
结果是否
正确L1 L2 L3 L4 L1/2 km/500 Ω/90° [1.000 0,0.693 9] [0.662 1,0.000 1] [0.415 3,0.096 8] [0.413 8,0.209 3] [2 1 1 1] L1 正确 L1/5 km/500 Ω/90° [1.000 0,0.676 9] [0.568 6,0.000 1] [0.398 2,0.134 5] [0.398 8,0.188 5] [2 1 1 1] L1 正确 L1/10 km/100 Ω/0 [1.000 0,0.743 0] [0.335 6,0.000 04] [0.334 8,0.110 0] [0.335 1,0.147 0] [2 1 1 1] L1 正确 L2/3 km/100 Ω/45° [0.555 4,0.000 2] [1.000 0,0.679 7] [0.376 2,0.144 9] [0.370 2,0.175 2] [1 2 1 1] L2 正确 L2/8 km/100 Ω/45° [0.572 8,0.000 2] [1.000 0,0.677 7] [0.375 9,0.141 3] [0.371 1,0.180 8] [1 2 1 1] L2 正确 L2/8 km/500 Ω/90° [0.652 3,0.012 5] [1.000 0,0.589 0] [0.478 3,0.137 4] [0.524 6,0.261 0] [1 2 1 1] L2 正确 L3/2 km/100 Ω/0 [0.348 8,0.000 05] [0.344 5,0.000 03] [1.000 0,0.987 7] [0.346 8,0.012 3] [1 1 2 1] L3 正确 L3/2 km/100 Ω/45° [0.570 2,0.021 6] [0.791 1,0.000 2] [1.000 0,0.553 7] [0.521 6,0.424 5] [1 1 2 1] L3 正确 L4/4 km/150Ω/45° [0.424 3,0.000 4] [0.430 6,0.000 2] [0.422 8,0.447 1] [1.000 0,0.552 3] [1 1 1 2] L4 正确 L4/6 km/200 Ω/90° [0.593 2,0.000 3] [0.588 9,0.000 2] [0.531 4,0.486 8] [1.000 0,0.512 7] [1 1 1 2] L4 正确 5.4 选线方法适用性验证
5.4.1 不同过渡电阻
设置L1距离母线3 km处发生不同阻值的单相接地故障,故障初相角为90°,过渡电阻分别为10,100,500,1 000,1 500 Ω,选线结果见表3。
由表3可知,当过渡电阻从0增至1.5 kΩ时,聚类分析得出的结果与实际故障线路一致,表明本文所提选线方法具有较强的耐过渡电阻能力与较高的准确率。
表 3 不同过渡电阻时的选线结果Table 3. Line selection results at different transition resistances过渡
电阻/Ω故障特征量
$\left[\rho_1, \rho_2, \rho_3, \rho_4, h_1, h_2, h_3, h_4\right] $聚类
标签选线
结果10 [ 1.0000 ,0.4124 ,0.3548 ,0.3555 ,0.6117 ,0.0001 ,0.1633 ,0.2249 ][2 1 1 1] L1 100 [ 1.0000 ,0.4489 ,0.3539 ,0.3564 ,0.5273 ,0.0001 ,0.2014 ,0.2712 ][2 1 1 1] L1 200 [ 1.0000 ,0.6462 ,0.3882 ,0.3868 ,0.5590 ,0.0001 ,0.2163 ,0.2246 ][2 1 1 1] L1 500 [ 1.0000 ,0.7751 ,0.4283 ,0.4274 ,0.5939 ,0.0001 ,0.2095 ,0.1966 ][2 1 1 1] L1 1 000 [ 1.0000 ,0.7472 ,0.4283 ,0.4271 ,0.5484 ,0.00004 ,0.1894 ,0.2622 ][2 1 1 1] L1 1 500 [ 1.0000 ,0.7182 ,0.4250 ,0.4244 ,0.5304 ,0.00003 ,0.1901 ,0.2795 ][2 1 1 1] L1 5.4.2 不同故障距离
设置L4发生故障过渡电阻为150 Ω的单相接地故障,故障初相角为45°,将故障位置分别设定为距离母线2,4,6,8,11 km,选线结果见表4。
表 4 不同故障距离时的选线结果Table 4. Line selection results at different fault distances故障
位置/km故障特征量
$\left[\rho_1, \rho_2, \rho_3, \rho_4, h_1, h_2, h_3, h_4\right] $聚类
标签选线
结果2 [ 0.7171 ,0.6576 ,0.6872 ,1.0000 ,0.0270 ,0.0003 ,0.4621 ,0.5106 ][1 1 1 2] L4 4 [ 0.4243 ,0.4306 ,0.4228 ,1.0000 ,0.0004 ,0.0002 ,0.4471 ,0.5523 ][1 1 1 2] L4 6 [ 0.5683 ,0.5640 ,0.5107 ,1.0000,0.0003 ,0.0002 ,0.4891 ,0.5104 ][1 1 1 2] L4 8 [ 0.5687 ,0.5830 ,0.6992 ,1.0000 ,0.0199 ,0.0002 ,0.4734 ,0.5066 ][1 1 1 2] L4 11 [ 0.5340 ,0.5328 ,0.5710 ,1.0000 ,0.0003 ,0.0099 ,0.4857 ,0.5041 ][1 1 1 2] L4 由表4可看出,当改变故障位置时,所提选线方法仍能够正确选择出故障线路。同时也发现,健全线路L3的能量系数与故障线路L4的能量系数相差不大,这是因为L3中包含了电缆区段,所以流经该线路的电容电流较大,导致L3和L4之间高频分量的幅值差异较小,但此时L3和L4零序电流相似度之间的差异仍然存在。由此可知,单相接地故障发生在不同类型的线路或线路的不同位置时,本文所提选线方法仍然有效,适应性较好。
5.4.3 不同故障初相角
设置L2距离母线5 km处发生不同故障初相角单相接地故障,故障过渡电阻为75 Ω,故障初相角分别为0,30,45,90°,具体选线结果见表5。
表 5 不同故障初相角时的选线结果Table 5. Line selection results at different fault initial phase angles故障
初相角/(°)故障特征量
$\left[\rho_1, \rho_2, \rho_3, \rho_4, h_1, h_2, h_3, h_4\right] $聚类
标签选线
结果0 [ 0.3372 ,1.0000 ,0.3356 ,0.3359 ,0.0001 ,0.7453 ,0.1090 ,0.1457 ][1 2 1 1] L2 30 [ 0.5624 ,1.0000 ,0.3714 ,0.3705 ,0.0001 ,0.6937 ,0.1327 ,0.1735 ][1 2 1 1] L2 45 [ 0.4416 ,1.0000 ,0.3482 ,0.3561 ,0.0001 ,0.6736 ,0.1408 ,0.1854 ][1 2 1 1] L2 60 [ 0.4311 ,1.0000 ,0.3645 ,0.3758 ,0.0002 ,0.6400 ,0.1551 ,0.2047 ][1 2 1 1] L2 90 [ 0.4266 ,1.0000 ,0.3804 ,0.3919 ,0.0002 ,0.5730 ,0.1839 ,0.2429 ][1 2 1 1] L2 由表5可看出,当系统发生不同故障初相角的单相接地故障时,聚类分析得出的结果与实际故障线路保持一致,该选线方法能正确判定故障线路。因此,故障发生在相电压过0附近、峰值附近或其他情况时,本文提出的选线方法均能够准确判断故障线路,适应性较好。
在仿真模型中,模拟不同故障工况,计算各线路暂态零序电流高频分量的能量系数和表征不同线路之间暂态零序电流波形相似特性的距离系数,聚类分析得出的选线结果与实际故障线路保持一致,本文提出的选线方法在不同故障工况下的选线结果均正确。
5.4.4 不同线路结构
考虑到煤矿实际配电网存在极长线路和短线路,通过调整各出线长度,进一步模拟煤矿配电网,调整后的仿真拓扑如图6所示。故障分别设置于线路L3末端,故障初相角为0,过渡电阻分别为500,1 000,1 500,2 000,3 000 Ω。不同线路长度组合下故障选线结果见表6。
表 6 不同线路长度组合下故障选线结果Table 6. Fault line selection results for different combinations of line lengths过渡电阻/Ω 故障特征量
[ρ1,ρ2,ρ3,ρ4,h1,h2,h3,h4]聚类
标签选线
结果500 [ 0.3356 ,0.3355 ,1.0000 ,0.3373 ,0.0411 ,0.0564 ,0.6374 ,0.2651 ][1 1 2 1] L3 1000 [ 0.3360 ,0.3359 ,1.0000 ,0.3379 ,0.0448 ,0.0614 ,0.6044 ,0.2893 ][1 1 2 1] L3 1500 [ 0.3362 ,0.3361 ,1.0000 ,0.3382 ,0.0451 ,0.0618 ,0.6015 ,0.2915 ][1 1 2 1] L3 2000 [ 0.3364 ,0.3363 ,1.0000 ,0.3385 ,0.0452 ,0.0620 ,0.6200 ,0.2924 ][1 1 2 1] L3 3000 [ 0.3365 ,0.3364 ,1.0000 ,0.3387 ,0.0454 ,0.0623 ,0.5985 ,0.2938 ][1 1 2 1] L3 由表6可看出,所提方法在供电长度不均匀、长短差距较大时,仍可保证选线结果的可靠性,能够适用于煤矿配电网。
5.4.5 不同聚类算法选线效果对比分析
为了验证不同聚类算法的选线效果,选取K−means聚类、模糊C均值聚类、层次聚类、谱聚类与改进K−means聚类算法进行对比测试。选用聚类质量和选线正确率2个指标来度量不同聚类算法的性能。聚类质量用轮廓系数来度量,该指标综合考量了同一类内的紧密程度和不同类间的相异程度,数值越大代表聚类效果越佳。
将仿真得到的数据分别输入5种聚类算法中,对聚类结果进行分析。选线正确率和轮廓系数见表7。
表 7 不同聚类算法评价指标对比Table 7. Comparison of evaluation indicators for different clustering algorithms聚类算法 选线正确率/% 轮廓系数 K−means聚类 94.8 0.81 改进K−means聚类 98.2 0.88 模糊C均值聚类 93.9 0.79 层次聚类 93.0 0.79 谱聚类 82.5 0.69 由表7可看出,相较于其他聚类算法,改进K−means聚类算法在选线正确率和聚类质量上性能均得到了提升。
6. 现场测试
江苏广识电气股份有限公司通过0.4 kV低压等值实验平台获取了大量故障数据,线路L1发生1 000 Ω接地故障的现场录波如图7所示,i0为零序电流。
实验平台共有5条出线,但受示波器通道数量的限制,仅记录其中4条线路零序电流信号。低压等值实验平台组成如图8所示,线路L1发生不同阻值接地故障的选线结果见表8。
表 8 实测数据选线结果Table 8. Line selection results based on measured data过渡电阻/Ω 故障特征量
[ρ1,ρ2,ρ3,ρ4,h1,h2,h3,h4]聚类
标签是否
正确500 [ 1.0000 ,0.3963 ,0.3880 ,0.3668 ,0.8528 ,0.1009 ,0.0280 ,0.0183 ][2 1 1 1] 正确 1 000 [ 1.0000 ,0.4800 ,0.4830 ,0.5008 ,0.8587 ,0.0709 ,0.0447 ,0.0257 ][2 1 1 1] 正确 2 000 [ 1.0000 ,0.4583 ,0.4857 ,0.5446 ,0.6308 ,0.1776 ,0.1090 ,0.0827 ][2 1 1 1] 正确 3 000 [ 1.0000 ,0.6025 ,0.5851 ,0.6753 ,0.6340 ,0.0823 ,0.1466 ,0.1371 ][2 1 1 1] 正确 由图8和表8可知,实测数据中存在大量环境噪声,对波形产生了严重影响,而在如此极端工况下,现场数据的故障特征仍能用能量系数及距离系数衡量,且故障线路与健全线路的能量系数及距离系数区分度明显,证明了本文所提选线方法具有较强的抗噪声干扰与耐过渡电阻能力。
7. 结论
1) 基于故障线路与健全线路波形相似度差距较大的原理,提出采用DTW距离算法定量刻画各线路电流序列之间波形相似程度的方法。
2) 选用Hilbert包络能量衡量暂态零序电流中包含的高频分量幅值时,故障线路与健全线路的能量系数区分度明显,能够正确体现健全线路与故障线路之间的差异。
3) 仿真实验验证结果表明:相较于其他聚类算法,改进K−means聚类算法在选线准确率及聚类质量上表现更佳。该方法在面对不同系统结构及不同故障工况时,均可确保选线结果的准确性,既可以用于中压配电网,又可用于煤矿配电网。
4) 现场测试结果表明:在强噪声环境下该方法仍具有较高的耐过渡电阻能力,可将保护的耐过渡电阻能力提升至3 000 Ω。
-
表 1 单位长度线路参数
Table 1 Line parameters per unit length
线路类型 相序 电阻/(Ω·km−1) 电感/(mH·km−1) 电容/(μF·km−1) 架空线 正序 0.170 1.216 0.098 零序 0.232 5.469 0.006 电缆线 正序 0.270 0.255 0.339 零序 2.700 1.016 0.275 表 2 部分案例的故障特征量及选线结果
Table 2 Fault characteristics and line selection results for selected cases
故障线路/故障位置/
过渡电阻/故障初相角故障特征量[$ \rho_n,h_n $] 聚类标签 选线
结果是否
正确L1 L2 L3 L4 L1/2 km/500 Ω/90° [1.000 0,0.693 9] [0.662 1,0.000 1] [0.415 3,0.096 8] [0.413 8,0.209 3] [2 1 1 1] L1 正确 L1/5 km/500 Ω/90° [1.000 0,0.676 9] [0.568 6,0.000 1] [0.398 2,0.134 5] [0.398 8,0.188 5] [2 1 1 1] L1 正确 L1/10 km/100 Ω/0 [1.000 0,0.743 0] [0.335 6,0.000 04] [0.334 8,0.110 0] [0.335 1,0.147 0] [2 1 1 1] L1 正确 L2/3 km/100 Ω/45° [0.555 4,0.000 2] [1.000 0,0.679 7] [0.376 2,0.144 9] [0.370 2,0.175 2] [1 2 1 1] L2 正确 L2/8 km/100 Ω/45° [0.572 8,0.000 2] [1.000 0,0.677 7] [0.375 9,0.141 3] [0.371 1,0.180 8] [1 2 1 1] L2 正确 L2/8 km/500 Ω/90° [0.652 3,0.012 5] [1.000 0,0.589 0] [0.478 3,0.137 4] [0.524 6,0.261 0] [1 2 1 1] L2 正确 L3/2 km/100 Ω/0 [0.348 8,0.000 05] [0.344 5,0.000 03] [1.000 0,0.987 7] [0.346 8,0.012 3] [1 1 2 1] L3 正确 L3/2 km/100 Ω/45° [0.570 2,0.021 6] [0.791 1,0.000 2] [1.000 0,0.553 7] [0.521 6,0.424 5] [1 1 2 1] L3 正确 L4/4 km/150Ω/45° [0.424 3,0.000 4] [0.430 6,0.000 2] [0.422 8,0.447 1] [1.000 0,0.552 3] [1 1 1 2] L4 正确 L4/6 km/200 Ω/90° [0.593 2,0.000 3] [0.588 9,0.000 2] [0.531 4,0.486 8] [1.000 0,0.512 7] [1 1 1 2] L4 正确 表 3 不同过渡电阻时的选线结果
Table 3 Line selection results at different transition resistances
过渡
电阻/Ω故障特征量
$\left[\rho_1, \rho_2, \rho_3, \rho_4, h_1, h_2, h_3, h_4\right] $聚类
标签选线
结果10 [ 1.0000 ,0.4124 ,0.3548 ,0.3555 ,0.6117 ,0.0001 ,0.1633 ,0.2249 ][2 1 1 1] L1 100 [ 1.0000 ,0.4489 ,0.3539 ,0.3564 ,0.5273 ,0.0001 ,0.2014 ,0.2712 ][2 1 1 1] L1 200 [ 1.0000 ,0.6462 ,0.3882 ,0.3868 ,0.5590 ,0.0001 ,0.2163 ,0.2246 ][2 1 1 1] L1 500 [ 1.0000 ,0.7751 ,0.4283 ,0.4274 ,0.5939 ,0.0001 ,0.2095 ,0.1966 ][2 1 1 1] L1 1 000 [ 1.0000 ,0.7472 ,0.4283 ,0.4271 ,0.5484 ,0.00004 ,0.1894 ,0.2622 ][2 1 1 1] L1 1 500 [ 1.0000 ,0.7182 ,0.4250 ,0.4244 ,0.5304 ,0.00003 ,0.1901 ,0.2795 ][2 1 1 1] L1 表 4 不同故障距离时的选线结果
Table 4 Line selection results at different fault distances
故障
位置/km故障特征量
$\left[\rho_1, \rho_2, \rho_3, \rho_4, h_1, h_2, h_3, h_4\right] $聚类
标签选线
结果2 [ 0.7171 ,0.6576 ,0.6872 ,1.0000 ,0.0270 ,0.0003 ,0.4621 ,0.5106 ][1 1 1 2] L4 4 [ 0.4243 ,0.4306 ,0.4228 ,1.0000 ,0.0004 ,0.0002 ,0.4471 ,0.5523 ][1 1 1 2] L4 6 [ 0.5683 ,0.5640 ,0.5107 ,1.0000,0.0003 ,0.0002 ,0.4891 ,0.5104 ][1 1 1 2] L4 8 [ 0.5687 ,0.5830 ,0.6992 ,1.0000 ,0.0199 ,0.0002 ,0.4734 ,0.5066 ][1 1 1 2] L4 11 [ 0.5340 ,0.5328 ,0.5710 ,1.0000 ,0.0003 ,0.0099 ,0.4857 ,0.5041 ][1 1 1 2] L4 表 5 不同故障初相角时的选线结果
Table 5 Line selection results at different fault initial phase angles
故障
初相角/(°)故障特征量
$\left[\rho_1, \rho_2, \rho_3, \rho_4, h_1, h_2, h_3, h_4\right] $聚类
标签选线
结果0 [ 0.3372 ,1.0000 ,0.3356 ,0.3359 ,0.0001 ,0.7453 ,0.1090 ,0.1457 ][1 2 1 1] L2 30 [ 0.5624 ,1.0000 ,0.3714 ,0.3705 ,0.0001 ,0.6937 ,0.1327 ,0.1735 ][1 2 1 1] L2 45 [ 0.4416 ,1.0000 ,0.3482 ,0.3561 ,0.0001 ,0.6736 ,0.1408 ,0.1854 ][1 2 1 1] L2 60 [ 0.4311 ,1.0000 ,0.3645 ,0.3758 ,0.0002 ,0.6400 ,0.1551 ,0.2047 ][1 2 1 1] L2 90 [ 0.4266 ,1.0000 ,0.3804 ,0.3919 ,0.0002 ,0.5730 ,0.1839 ,0.2429 ][1 2 1 1] L2 表 6 不同线路长度组合下故障选线结果
Table 6 Fault line selection results for different combinations of line lengths
过渡电阻/Ω 故障特征量
[ρ1,ρ2,ρ3,ρ4,h1,h2,h3,h4]聚类
标签选线
结果500 [ 0.3356 ,0.3355 ,1.0000 ,0.3373 ,0.0411 ,0.0564 ,0.6374 ,0.2651 ][1 1 2 1] L3 1000 [ 0.3360 ,0.3359 ,1.0000 ,0.3379 ,0.0448 ,0.0614 ,0.6044 ,0.2893 ][1 1 2 1] L3 1500 [ 0.3362 ,0.3361 ,1.0000 ,0.3382 ,0.0451 ,0.0618 ,0.6015 ,0.2915 ][1 1 2 1] L3 2000 [ 0.3364 ,0.3363 ,1.0000 ,0.3385 ,0.0452 ,0.0620 ,0.6200 ,0.2924 ][1 1 2 1] L3 3000 [ 0.3365 ,0.3364 ,1.0000 ,0.3387 ,0.0454 ,0.0623 ,0.5985 ,0.2938 ][1 1 2 1] L3 表 7 不同聚类算法评价指标对比
Table 7 Comparison of evaluation indicators for different clustering algorithms
聚类算法 选线正确率/% 轮廓系数 K−means聚类 94.8 0.81 改进K−means聚类 98.2 0.88 模糊C均值聚类 93.9 0.79 层次聚类 93.0 0.79 谱聚类 82.5 0.69 表 8 实测数据选线结果
Table 8 Line selection results based on measured data
过渡电阻/Ω 故障特征量
[ρ1,ρ2,ρ3,ρ4,h1,h2,h3,h4]聚类
标签是否
正确500 [ 1.0000 ,0.3963 ,0.3880 ,0.3668 ,0.8528 ,0.1009 ,0.0280 ,0.0183 ][2 1 1 1] 正确 1 000 [ 1.0000 ,0.4800 ,0.4830 ,0.5008 ,0.8587 ,0.0709 ,0.0447 ,0.0257 ][2 1 1 1] 正确 2 000 [ 1.0000 ,0.4583 ,0.4857 ,0.5446 ,0.6308 ,0.1776 ,0.1090 ,0.0827 ][2 1 1 1] 正确 3 000 [ 1.0000 ,0.6025 ,0.5851 ,0.6753 ,0.6340 ,0.0823 ,0.1466 ,0.1371 ][2 1 1 1] 正确 -
[1] 徐丙垠. 现代配电网继电保护技术及其发展[J]. 供用电,2024,41(8):65-74,87. XU Bingyin. Modern distribution systems relay protection technology and its development[J]. Distribution & Utilization,2024,41(8):65-74,87.
[2] 于洋,范荣奇,徐丙垠,等. 小电流接地故障保护技术及其发展[J]. 供用电,2023,40(2):1-8. YU Yang,FAN Rongqi,XU Bingyin,et al. Small current earth fault protection and its developments[J]. Distribution & Utilization,2023,40(2):1-8.
[3] Q/GDW 370—2009 城市配电网技术导则[S]. Q/GDW 370-2009 Technical guidelines for urban distribution networks[S].
[4] 刘宝稳,万子雄,曾祥君,等. 基于有源消弧暂态衰减信息的配电网接地故障跟踪检测方法[J]. 中国电机工程学报,2024,44(2):464-476. LIU Baowen,WAN Zixiong,ZENG Xiangjun,et al. Ground fault tracking and detection of distribution network based on transient attenuation information of active arc-suppression process[J]. Proceedings of the CSEE,2024,44(2):464-476.
[5] 崔智明. 煤矿井下低压供电系统远程集控漏电试验平台设计研究[J]. 中国煤炭,2024,50(1):101-107. CUI Zhiming. Design and research of remote control leakage test platform for underground low voltage power supply system in coal mine[J]. China Coal,2024,50(1):101-107.
[6] 王清亮,杨博,高梅,等. 基于等效电导的矿井电网智能漏电保护方法[J]. 工矿自动化,2020,46(6):59-64. WANG Qingliang,YANG Bo,GAO Mei,et al. Intelligent leakage protection method of mine power grid based on equivalent conductance[J]. Industry and Mine Automation,2020,46(6):59-64.
[7] 高启业,李军. 煤矿供电智能化建设关键技术[J]. 煤矿安全,2021,52(6):153-157. GAO Qiye,LI Jun. Key technologies for intelligent construction of power supply in coal mines[J]. Safety in Coal Mines,2021,52(6):153-157.
[8] 孙其东,张开如,刘建,等. 基于五次谐波和小波重构能量的配电网单相接地故障的选线方法研究[J]. 电测与仪表,2016,53(16):1-4. DOI: 10.3969/j.issn.1001-1390.2016.16.001 SUN Qidong,ZHANG Kairu,LIU Jian,et al. Research on single-phase fault earth fault line selection method for the distribution network based on fifth harmonics and wavelet reconstruction[J]. Electrical Measurement & Instrumentation,2016,53(16):1-4. DOI: 10.3969/j.issn.1001-1390.2016.16.001
[9] 李晓波,张世乐,谢剑锋,等. 计及电网参数不平衡的灵活接地系统高阻接地故障选线方法[J/OL]. 电力系统保护与控制:1-10[2024-08-23]. https://doi.org/10.19783/j.cnki.pspc.240302. LI Xiaobo,ZHAGN Shile,XIE Jianfeng,et al. A fiexible grounding system high resistance grounding fault line selection method considering unbalance power grid parameters[J]. Power System Protection and Control:1-10[2024-08-23]. https://doi.org/10.19783/j.cnki.pspc.240302.
[10] 王清亮,赵东强,邵磊,等. 适用于矿山电网的单相接地故障选线新方法[J]. 工矿自动化,2016,42(10):40-44. WANG Qingliang,ZHAO Dongqiang,SHAO Lei,et al. A novel line selection method of single phase grounding fault suitable for coal mine power network[J]. Industry and Mine Automation,2016,42(10):40-44.
[11] 刘宝稳,曾祥君,张慧芬,等. 有源柔性接地配电网弧光高阻接地故障检测方法[J]. 中国电机工程学报,2022,42(11):4001-4013. LIU Baowen,ZENG Xiangjun,ZHANG Huifen,et al. Arc high resistance grounding fault detection method for active flexible grounding distribution network[J]. Proceedings of the CSEE,2022,42(11):4001-4013.
[12] 刘宝稳,曾祥君,张慧芬,等. 注入电流馈线分布特征及其在接地故障检测中的应用[J]. 电网技术,2021,45(7):2731-2740. LIU Baowen,ZENG Xiangjun,ZHANG Huifen,et al. Distribution model of injection current in feeder and its application in single phase to ground fault detection[J]. Power System Technology,2021,45(7):2731-2740.
[13] 王晓卫,高杰,魏向向,等. 基于小波包−贝叶斯的小电流接地系统故障选线方法[J]. 工矿自动化,2014,40(6):54-59. WANG Xiaowei,GAO Jie,WEI Xiangxiang,et al. A fault line selection method of small current grounding system based on wavelet packet and Bayes theory[J]. Industry and Mine Automation,2014,40(6):54-59.
[14] 曾哲,邓丰,张振,等. 基于VMD−WVD的故障行波全波形时−频分析方法[J]. 电力系统保护与控制,2022,50(7):49-57. ZENG Zhe,DENG Feng,ZHANG Zhen,et al. Time-frequency analysis of a traveling wave based on VMD and WVD[J]. Power System Protection and Control,2022,50(7):49-57.
[15] 贾清泉,石磊磊,王宁,等. 基于证据理论和信息熵的消弧线圈接地电网融合选线方法[J]. 电工技术学报,2012,27(6):191-197. JIA Qingquan,SHI Leilei,WANG Ning,et al. A fusion method for ground fault line detection in compensated power networks based on evidence theory and information entropy[J]. Transactions of China Electrotechnical Society,2012,27(6):191-197.
[16] ZHOU Niancheng,WANG Jian,WANG Qianggang. A novel estimation method of metering errors of electric energy based on membership cloud and dynamic time warping[J]. IEEE Transactions on Smart Grid,2017,8(3):1318-1329. DOI: 10.1109/TSG.2016.2619375
[17] 庄胜斌,缪希仁,江灏,等. 基于改进欧氏−动态时间弯曲距离的谐振接地配电网单相高阻接地故障选线方法[J]. 电网技术,2020,44(1):273-281. ZHUANG Shengbin,MIAO Xiren,JIANG Hao,et al. A line selection method for single-phase high-impedance grounding fault in resonant grounding system of distribution network based on improved euclidean-dynamic time warping distance[J]. Power System Technology,2020,44(1):273-281.
[18] 史鸿飞,邓丰,钟航,等. 基于暂态时−频特征差异的配电网高阻接地故障识别方法[J]. 中国电机工程学报,2024,44(16):6455-6470. SHI Hongfei,DENG Feng,ZHONG Hang,et al. Identification method of high impedance fault in distribution network based on transient time-frequency characteristic difference[J]. Proceedings of the CSEE,2024,44(16):6455-6470.
[19] 欧逸哲,术茜. 基于SOM和K均值聚类的谐振接地系统故障选线及区段定位方法[J]. 电气技术,2023,24(10):23-30. DOI: 10.3969/j.issn.1673-3800.2023.10.004 OU Yizhe,ZHU Xi. Fault line detection and fault section location method in resonant grounding systems based on SOM and K-means clustering[J]. Electrical Engineering,2023,24(10):23-30. DOI: 10.3969/j.issn.1673-3800.2023.10.004
[20] 李梦涵. 小电流系统单相接地故障选线方法研究[D]. 西安:西安理工大学,2021. LI Menghan. Study on line selection method of single-phase grounding fault in small current system[D]. Xi'an:Xi'an University of Technology,2021.
[21] 杨俊闯,赵超. K−Means聚类算法研究综述[J]. 计算机工程与应用,2019,55(23):7-14,63. DOI: 10.3778/j.issn.1002-8331.1908-0347 YANG Junchuang,ZHAO Chao. Survey on K-Means clustering algorithm[J]. Computer Engineering and Applications,2019,55(23):7-14,63. DOI: 10.3778/j.issn.1002-8331.1908-0347
[22] 杨善林,李永森,胡笑旋,等. K−Means算法中的K值优化问题研究[J]. 系统工程理论与实践,2006(2):97-101. DOI: 10.3321/j.issn:1000-6788.2006.02.013 YANG Shanlin,LI Yongsen,HU Xiaoxuan,et al. Optimization study on K value of K-Means algorithm[J]. Systems Engineering-Theory & Practice,2006(2):97-101. DOI: 10.3321/j.issn:1000-6788.2006.02.013