通风方式对沿空留巷采空区煤自燃影响规律研究

郭军, 王磊, 杜文涛, 刘荫, 陈昌明, 张科峰, 李岱霖

郭军,王磊,杜文涛,等. 通风方式对沿空留巷采空区煤自燃影响规律研究[J]. 工矿自动化,2024,50(11):142-151. DOI: 10.13272/j.issn.1671-251x.2024090005
引用本文: 郭军,王磊,杜文涛,等. 通风方式对沿空留巷采空区煤自燃影响规律研究[J]. 工矿自动化,2024,50(11):142-151. DOI: 10.13272/j.issn.1671-251x.2024090005
GUO Jun, WANG Lei, DU Wentao, et al. Study on the influence of ventilation methods on coal spontaneous combustion in gob-side entry retaining goaf areas[J]. Journal of Mine Automation,2024,50(11):142-151. DOI: 10.13272/j.issn.1671-251x.2024090005
Citation: GUO Jun, WANG Lei, DU Wentao, et al. Study on the influence of ventilation methods on coal spontaneous combustion in gob-side entry retaining goaf areas[J]. Journal of Mine Automation,2024,50(11):142-151. DOI: 10.13272/j.issn.1671-251x.2024090005

通风方式对沿空留巷采空区煤自燃影响规律研究

基金项目: 国家自然科学基金青年科学基金项目(52004209);国家自然科学基金面上项目(52174198,52174197);陕西省博士后科研项目(2023BSHEDZZ286)。
详细信息
    作者简介:

    郭军(1987—),男,陕西西安人,副教授,博士,研究方向为煤火灾害防控,E-mail:guojun@xust.edu.cn

    通讯作者:

    王磊(2000—),男,陕西渭南人,硕士研究生,研究方向为煤火灾害防控,E-mail:22220226135@stu.xust.edu.cn

  • 中图分类号: TD752

Study on the influence of ventilation methods on coal spontaneous combustion in gob-side entry retaining goaf areas

  • 摘要:

    沿空留巷开采条件下采空区气体分布特征易受通风方式影响,煤自燃隐患位置难以精准掌握。针对上述问题,以甘肃某矿8521工作面为研究背景,利用Fluent软件构建了沿空留巷采空区物理模型,分析了沿空留巷采空区煤体孔隙率,对比了“W”型通风与“Y”型通风(一进两回、两进一回)方式下采空区漏风流场及氧浓度分布特征。结果表明:沿空留巷采空区煤体孔隙率整体呈“铲状”分布(即边缘高、中部低)并逐步向采空区收缩;当矿井供风量及速率一定时,沿空留巷采空区漏风速率受通风方式影响,与进风巷数量呈正相关;采空区关键漏风位置多为沿空侧风流交汇处,该位置的漏风速率受压差影响;采空区漏风流场的差异导致各通风方式下的氧浓度及氧化升温带的分布特征不同,“W”型通风方式下采空区浅部、深部气体整体均呈扇形运移,氧化升温带靠近沿空留巷且呈“√”分布,氧化升温带面积占已采区域面积的38.1%;综合对比采空区关键漏风位置、氧化升温带分布特征及防灭火难度等方面,得出“W”型通风更有利于采空区煤自燃防治。

    Abstract:

    Under gob-side entry retaining mining conditions, the gas distribution characteristics in the goaf are easily affected by the ventilation methods, making it difficult to accurately identify the locations of coal spontaneous combustion hazards. To address this issue, the 8521 working face of a mine in Gansu was used as the research background. A physical model of the gob-side entry retaining goaf was constructed using Fluent software. The study analyzed the coal body porosity in the goaf and compared the leakage airflow field and oxygen concentration distribution characteristics under "W"-type ventilation and "Y"-type ventilation (single entry, two returns, and two entries, one return) methods. The results showed that: the coal body porosity in the gob-side entry retaining goaf generally presents a "shovel-shaped" distribution, with higher porosity at the edges, lower in the center, gradually narrowing towards the goaf. When the ventilation volume and rate of the mine are fixed, the leakage airflow rate in the gob-side entry retaining goaf is influenced by the ventilation method and is positively correlated with the number of intake lanes. The key leakage points in the goaf are mainly located at the intersections of the side airflow, and the leakage rate at these points is influenced by the pressure difference. The differences in the leakage airflow field in the goaf lead to different oxygen concentration and oxidation heating zone distribution characteristics under each ventilation method. Under the "W"-type ventilation method, the gas in both the shallow and deep parts of the goaf migrates in a fan-shaped pattern. The oxidation heating zone is closer to the gob-side entry retaining and is distributed in a "√" shape. The area of the oxidation heating zone accounts for 38.1% of the mined area. A comprehensive comparison of the key leakage points in the goaf, oxidation heating zone distribution, and firefighting difficulty indicates that "W"-type ventilation is more beneficial for preventing and controlling coal spontaneous combustion in the goaf.

  • 图  1   8521工作面“W”型通风方式

    Figure  1.   "W" ventilation mode of 8521 working face

    图  2   沿空留巷采空区模型

    Figure  2.   Gob-side entry retaining goaf model

    图  3   采空区煤体孔隙率分布特征

    Figure  3.   Distribution characteristics of coal porosity in goaf

    图  4   采空区漏风速率及迹线分布特征

    Figure  4.   Distribution characteristics of air leakage rate and leakage flow paths in goaf

    图  5   采空区氧浓度及煤自燃“三带”分布特征

    Figure  5.   Distribution characteristics of oxygen concentration and "three zones" of coal spontaneous combustion in goaf

    图  6   观测孔布置

    Figure  6.   Layout of observation holes

    图  7   模拟结果与现场实测结果对比

    Figure  7.   Comparison between simulation results and field measurement results

    图  8   通风方式

    Figure  8.   Ventilation modes

    图  9   不同通风方式下漏风速率三维矢量分布特征

    Figure  9.   Three-dimensional vector distribution characteristics of air leakage rate under different ventilation modes

    图  10   不同通风方式下漏风速率及迹线三维分布特征

    Figure  10.   Three-dimensional distribution characteristics of air leakage rate and leakage flow paths under different ventilation modes

    图  11   不同通风方式下煤自燃“三带”二维分布特征

    Figure  11.   Two-dimensional distribution characteristics of "three zones" of coal spontaneous combustion under different ventilation modes

    图  12   不同通风方式下煤自燃氧化升温带二维分布特征

    Figure  12.   Two-dimensional distribution characteristics of coal spontaneous combustion oxidation heating zone under different ventilation modes

    图  13   不同通风方式下煤自燃“三带”三维分布特征

    Figure  13.   Three-dimensional distribution characteristics of "three zones" of coal spontaneous combustion under different ventilation modes

    图  14   不同通风方式下采空区各区域氧浓度变化曲线

    Figure  14.   Variation of oxygen concentration in different regions of goaf under different ventilation conditions

    表  1   几何模型参数

    Table  1   Geometric model parameters

    位置尺寸(长×宽×高)/(m×m×m)
    采空区200.0×122.6×3.7
    8521工作面122.6×7.8×3.7
    8521胶带巷及沿空留巷、8522运输巷60.0×5.6×3.7
    沿空留巷水泥墙60.0×5.6×3.7
    下载: 导出CSV

    表  2   沿空留巷采空区边界条件

    Table  2   Boundary conditions of gob-side entry retaining goaf

    参数设置
    采空区和沿空留巷水泥墙interior
    煤体热导率/(W·m−1·k−10.045 4
    煤体黏度/(kg·m−1·s−11.72×10−5
    湍流模型k-epsilon
    湍流强度/%0.5
    煤体质量扩散率/(m2·s−12.88×10−5
    入口风速/(m·s−11.5
    下载: 导出CSV

    表  3   各通风工况条件参数

    Table  3   Parameters of each ventilation condition

    通风工况 8521胶带巷风量/(m3·min−1 8521轨道巷风量/(m3·min−1 沿空留巷风量/(m3·min−1 8522运输巷风量/(m3·min−1 风量配比
    “W”型通风(两边进中间回) 1 200 2 400 1 200 1 200 1∶2∶1∶1
    “Y”型通风(一进两回) 1 200 2 400 1 200 1 200 1∶2∶1∶1
    “Y”型通风(两进一回) 1 200 1 200 2 400 2 400 1∶1∶2∶2
    下载: 导出CSV
  • [1] 谢和平,吴立新,郑德志. 2025年中国能源消费及煤炭需求预测[J]. 煤炭学报,2019,44(7):1949-1960.

    XIE Heping,WU Lixin,ZHENG Dezhi. Prediction on the energy consumption and coal demand of China in 2025[J]. Journal of China Coal Society,2019,44(7):1949-1960.

    [2] 华心祝,李琛,刘啸,等. 再论我国沿空留巷技术发展现状及改进建议[J]. 煤炭科学技术,2023,51(1):128-145.

    HUA Xinzhu,LI Chen,LIU Xiao,et al. Current situation of gob-side entry retaining and suggestions for its improvement in China[J]. Coal Science and Technology,2023,51(1):128-145.

    [3]

    GUO Jun,CHEN Changming,WEN Hu,et al. Prediction model of goaf coal temperature based on PSO-GRU deep neural network[J]. Case Studies in Thermal Engineering,2024,53. DOI: 10.1016/j.csite.2023.103813.

    [4] 王超群,周明,郭英,等. 近距离煤层群采空区漏风规律及防控措施研究[J]. 矿业安全与环保,2020,47(2):81-84.

    WANG Chaoqun,ZHOU Ming,GUO Ying,et al. Study on the air leakage law and prevention and control measures in goaf of close-distance coal seam group[J]. Mining Safety & Environmental Protection,2020,47(2):81-84.

    [5] 疏义国,赵庆伟,郁亚楠. 易自燃煤层预测预报气体指标体系研究[J]. 煤炭科学技术,2019,47(10):229-234.

    SHU Yiguo,ZHAO Qingwei,YU Ya'nan. Research on prediction and forecast indicators system of easy spontaneous combustion coal seam[J]. Coal Science and Technology,2019,47(10):229-234.

    [6] 杜斌,赵磊. 采空区气体流场多尺度数值模拟及热蒸发效应分析[J]. 煤矿安全,2023,54(2):84-91.

    DU Bin,ZHAO Lei. Multi-scale numerical simulation of gas flow field in goaf and thermal evaporation effect analysis[J]. Safety in Coal Mines,2023,54(2):84-91.

    [7]

    WANG Gang,XU Hao,WU Mengmeng,et al. Porosity model and air leakage flow field simulation of goaf based on DEM-CFD[J]. Arabian Journal of Geosciences,2018,11(7):1-17.

    [8]

    ZUO Qiuling,WANG Yujie,LI Jingshan. Study on the oxidation and heating characteristics of residual coal in goafs under different air-leakage conditions[J]. Thermal Science,2021,25(5 Part A):3293-3302.

    [9] 程龙,贾海林,陈南,等. 基于采空区底板应力分布规律划分自燃“三带”的方法与实践[J]. 中国安全生产科学技术,2022,18(3):106-111.

    CHENG Long,JIA Hailin,CHEN Nan,et al. Method and practice of dividing "three zones" of spontaneous combustion based on floor stress distribution laws of goaf[J]. Journal of Safety Science and Technology,2022,18(3):106-111.

    [10] 郝宇,逄锦伦. 不同风量和瓦斯条件下采空区自燃“三带”分布规律[J]. 矿业安全与环保,2020,47(2):40-44.

    HAO Yu,PANG Jinlun. The distribution law of spontaneous combustion of "three zones" in goaf under different ventilation volume and gas condition[J]. Mining Safety & Environmental Protection,2020,47(2):40-44.

    [11] 张辛亥,席光,徐精彩,等. 基于流场模拟的综放面自燃危险区域划分及预测[J]. 北京科技大学学报,2005,27(6):641-644.

    ZHANG Xinhai,XI Guang,XU Jingcai,et al. Partition of spontaneous combustion dangerous zone and prediction of spontaneous combustion based on numerically modeling the flow field at fully mechanized caving face[J]. Journal of University of Science and Technology Beijing,2005,27(6):641-644.

    [12]

    MICHAYLOV M,VLASSEVA E. On void aerodynamics in a porous media of a gob area[C]. The 7th US Mine Ventilation Symposium,Lexington,1995:275-280.

    [13] 刘大锰,贾奇锋,蔡益栋. 中国煤层气储层地质与表征技术研究进展[J]. 煤炭科学技术,2022,50(1):196-203. DOI: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201019

    LIU Dameng,JIA Qifeng,CAI Yidong. Research progress on coalbed methane reservoir geology and characterization technology in China[J]. Coal Science and Technology,2022,50(1):196-203. DOI: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201019

    [14] 秦波涛,高远,史全林,等. 近距离煤层复合采空区煤自燃综合防治技术[J]. 工矿自动化,2021,47(9):1-6,17.

    QIN Botao,GAO Yuan,SHI Quanlin,et al. Comprehensive prevention and control technology of coal spontaneous combustion in compound goaf of close distance coal seam[J]. Industry and Mine Automation,2021,47(9):1-6,17.

    [15] 林柏泉,李庆钊,周延. 煤矿采空区瓦斯与煤自燃复合热动力灾害多场演化研究进展[J]. 煤炭学报,2021,46(6):1715-1726.

    LIN Baiquan,LI Qingzhao,ZHOU Yan. Research advances about multi-field evolution of coupled thermodynamic disasters in coal mine goaf[J]. Journal of China Coal Society,2021,46(6):1715-1726.

    [16] 侯公羽,李子祥,胡涛,等. 基于分布式光纤应变传感技术的隧道沉降监测研究[J]. 岩土力学,2020,41(9):3148-3158.

    HOU Gongyu,LI Zixiang,HU Tao,et al. Study of tunnel settlement monitoring based on distributed optic fiber strain sensing technology[J]. Rock and Soil Mechanics,2020,41(9):3148-3158.

    [17] 何满潮,马资敏,郭志飚,等. 深部中厚煤层切顶留巷关键技术参数研究[J]. 中国矿业大学学报,2018,47(3):468-477.

    HE Manchao,MA Zimin,GUO Zhibiao,et al. Key parameters of the gob-side entry retaining formed by roof cutting and pressure release in deep medium-thickness coal seams[J]. Journal of China University of Mining & Technology,2018,47(3):468-477.

    [18] 刘昆轮,常博,马祖杰,等. 自然风压作用下工作面采空区漏风特征研究[J]. 工矿自动化,2020,46(9):38-43.

    LIU Kunlun,CHANG Bo,MA Zujie,et al. Research on air leakage characteristics in goaf of working face under natural wind pressure[J]. Industry and Mine Automation,2020,46(9):38-43.

    [19] 李洪先,王国芝,朱明凯,等. Y型通风下采空区瓦斯与自然发火耦合危险区域划分研究[J]. 煤炭工程,2021,53(8):105-109.

    LI Hongxian,WANG Guozhi,ZHU Mingkai,et al. Classification of coupled hazard area of gas and spontaneous combustion under Y-type ventilation[J]. Coal Engineering,2021,53(8):105-109.

    [20]

    NIU Huiyong,YANG Yanxiao,BU Yunchuan,et al. Study on spontaneous combustion characteristics of coal samples with different pre-oxidized temperatures in secondary oxidation process[J]. Combustion Science and Technology,2023,195(8):1873-1886. DOI: 10.1080/00102202.2021.2004405

    [21]

    XU Yu,LI Zijun,LIU Huasen,et al. A model for assessing the compound risk represented by spontaneous coal combustion and methane emission in a gob[J]. Journal of Cleaner Production,2020,273(11). DOI: 10.1016/j.jclepro.2020.122925.

    [22]

    GUI Xiaohong,XUE Haiteng,ZHAN Xingrui,et al. Measurement and numerical simulation of coal spontaneous combustion in goaf under Y-type ventilation mode[J]. ACS Omega,2022,7(11):9406-9421. DOI: 10.1021/acsomega.1c06703

    [23] 杨晓晨,贾男,张晓明,等. 采空区垮落煤岩渗透特性研究[J]. 工矿自动化,2023,49(2):134-140.

    YANG Xiaochen,JIA Nan,ZHANG Xiaoming,et al. Study on permeability characteristics of caved coal and rock in goaf[J]. Journal of Mine Automation,2023,49(2):134-140.

    [24] 赵鹏翔,安星虣,李树刚,等. 倾斜厚煤层综放工作面伪斜长度与上隅角瓦斯浓度耦合机制研究[J]. 煤炭科学技术,2023,51(增刊1):73-85.

    ZHAO Pengxiang,AN Xingbao,LI Shugang,et al. Coupling mechanism of pseudo-slope length change and gas concentration in upper corner of fully mechanized caving surface of inclined thick coal seam in Xinjiang[J]. Coal Science and Technology,2023,51(S1):73-85.

  • 期刊类型引用(2)

    1. 祁瑞敏,张国栋,代皓轩. 基于改进模糊信息融合的煤矿带式输送机健康诊断. 电子测试. 2024(01): 16-20 . 百度学术
    2. 祁瑞敏,王新. 煤矿带式输送机健康诊断方法. 工矿自动化. 2019(02): 75-78 . 本站查看

    其他类型引用(0)

图(14)  /  表(3)
计量
  • 文章访问数:  62
  • HTML全文浏览量:  21
  • PDF下载量:  16
  • 被引次数: 2
出版历程
  • 收稿日期:  2024-09-01
  • 修回日期:  2024-11-22
  • 网络出版日期:  2024-10-28
  • 刊出日期:  2024-11-24

目录

    /

    返回文章
    返回