基于改进RT−DETR的井下输送带跑偏故障检测算法

安龙辉, 王满利, 张长森

安龙辉,王满利,张长森. 基于改进RT−DETR的井下输送带跑偏故障检测算法[J]. 工矿自动化,2025,51(3):54-62. DOI: 10.13272/j.issn.1671-251x.2024080089
引用本文: 安龙辉,王满利,张长森. 基于改进RT−DETR的井下输送带跑偏故障检测算法[J]. 工矿自动化,2025,51(3):54-62. DOI: 10.13272/j.issn.1671-251x.2024080089
AN Longhui, WANG Manli, ZHANG Changsen. Fault detection algorithm for underground conveyor belt deviation based on improved RT-DETR[J]. Journal of Mine Automation,2025,51(3):54-62. DOI: 10.13272/j.issn.1671-251x.2024080089
Citation: AN Longhui, WANG Manli, ZHANG Changsen. Fault detection algorithm for underground conveyor belt deviation based on improved RT-DETR[J]. Journal of Mine Automation,2025,51(3):54-62. DOI: 10.13272/j.issn.1671-251x.2024080089

基于改进RT−DETR的井下输送带跑偏故障检测算法

基金项目: 

国家自然科学基金项目(52074305);河南省科技攻关项目(242102221006)。

详细信息
    作者简介:

    安龙辉(1999—),男,河南新乡人,硕士研究生,研究方向为目标检测、图像处理,E-mail:alh1117@163.com

    通讯作者:

    王满利(1981—),男,河南焦作人,副教授,博士,研究方向为图像处理、人工智能、智慧矿山、工业过程控制,E-mail:wml920@163.com

  • 中图分类号: TD634

Fault detection algorithm for underground conveyor belt deviation based on improved RT-DETR

  • 摘要:

    目前输送带跑偏检测研究主要集中于提取输送带边缘的直线特征,该方式需设定特定阈值,易受环境因素的制约,导致检测速度慢、精度不高。针对该问题,提出了一种基于改进RT−DETR的井下输送带跑偏故障检测算法,使用改进RT−DETR直接对一组托辊检测,根据左右托辊的暴露程度识别是否跑偏。针对实时检测转换器(RT−DETR)主干网络进行3个方面的改进:① 为了减少主干网络的参数量和浮点运算数量(FLOPs),使用FasterNet Block替换ResNet34中的BasicBlock;② 为了提升模型的精度和效率,在FasterNet Block结构中,引入结构重参数化的思想;③ 为了提升FasterNet Block在特征提取方面的性能,引入了高效多尺度注意力机制(EMA),更加有效地捕捉全局和局部特征图。为了拓展感受野并捕获更有效、更广泛的上下文信息,以获得更为丰富的特征表达,采用改进高级筛选特征融合金字塔网络(HS−FPN)来优化多尺度特征融合。实验结果表明,与基准模型相比较,改进RT−DETR模型的参数量和FLOPs分别减少了8.4×106 个和17.8 G,mAP@0.5达94.5%,严重跑偏检测精度达99.2%,检测速度达41.0 帧/s,优于TOOD,ATSS等目标检测模型,满足煤矿生产对目标检测实时性和准确性的需求。

    Abstract:

    Current research on conveyor belt deviation detection mainly focuses on extracting the straight-line features of belt edges. The method requires setting specific thresholds and is easily affected by environmental factors, resulting in slow detection speed and low accuracy. To address the issue, an underground conveyor belt deviation fault detection algorithm based on an improved real-time detection transformer (RT-DETR) was proposed. The improved RT-DETR was used to directly detect a set of idlers and identify deviation based on the exposure degree of the left and right idlers. Three improvements were made to the RT-DETR backbone network: ① To reduce the number of parameters and floating-point operations (FLOPs), FasterNet Block was used to replace the BasicBlock in ResNet34. ② To enhance model accuracy and efficiency, the concept of structural reparameterization was introduced into the FasterNet Block structure. ③ To improve the feature extraction capability of FasterNet Block, an efficient multi-scale attention (EMA) Module was incorporated to capture both global and local feature maps more effectively. To expand the receptive field and capture more effective and comprehensive contextual information for richer feature representation, an improved high-level screening feature fusion pyramid network (HS-FPN) was adopted to optimize multi-scale feature fusion. Experimental results showed that compared to the baseline model, the improved RT-DETR reduced parameters and FLOPs by 8.4×106 and 17.8 G, respectively. The mAP@0.5 reached 94.5%, with a severe deviation detection accuracy of 99.2% and a detection speed of 41.0 frame per second, outperforming TOOD and ATSS object detection models, meeting the real-time and accuracy requirements of coal mine production.

  • 图  1   RT−DETR模型结构

    Figure  1.   RT-DETR model structure

    图  2   FRE Block结构

    Figure  2.   FRE Block structure

    图  3   PConv的工作原理

    Figure  3.   Working principle of PConv

    图  4   EMA整体结构

    Figure  4.   Overall structure of EMA

    图  5   CAA−HSFPN结构

    Figure  5.   CAA-HSFPN structure

    图  6   测量方法

    Figure  6.   Measurement method

    图  7   数据集中各类别图像数量

    Figure  7.   Number of images in each category in dataset

    图  8   输送带正常运行时的检测结果对比

    Figure  8.   Comparison of detection results during normal operation of conveyor belt

    图  9   输送带向右轻微跑偏时的检测结果对比

    Figure  9.   Comparison of detection results when the conveyor belt deviates slightly to the right

    图  10   输送带向右严重跑偏时的检测结果对比

    Figure  10.   Comparison of detection results when the conveyor belt deviates significantly to the right

    图  11   输送带向左轻微跑偏时的检测结果对比

    Figure  11.   Comparison of detection results when the conveyor belt deviates slightly to the left

    图  12   输送带向左严重跑偏时的检测结果对比

    Figure  12.   Comparison of detection results when the conveyor belt deviates significantly to the left

    表  1   网络训练超参数

    Table  1   Network training hyperparameters

    参数名称 参数设置 参数名称 参数设置
    训练次数 300 学习率动量 0.937
    批次大小 4 对象查询 300
    初始学习率 0.01 解码器 4
    下载: 导出CSV

    表  2   FRE Block消融实验结果

    Table  2   Results of FRE Block ablation experiments

    FasterNet
    Block
    EMA 重参
    数化
    参数量/106 FLOPs/G mAP@0.5/% 模型
    体积/MiB
    帧率/
    (帧·s−1
    正常 轻微跑偏 严重跑偏 均值
    × × × 31.1 88.8 97.4 80.5 98.0 92.0 61.5 52.2
    × × 24.4 72.3 98.5 81.4 98.6 92.8 48.5 52.1
    × 24.4 72.3 98.2 83.5 98.8 93.5 48.7 51.3
    × 24.6 76.1 97.7 80.5 99.0 92.4 48.9 43.3
    24.6 76.1 98.8 82.9 99.1 93.6 49.1 41.9
    下载: 导出CSV

    表  3   CAA−HSFPN对比实验结果

    Table  3   Comparative experimental results of CAA-HSFPN

    特征融合机制 参数量/106 FLOPs/G mAP@0.5/% 模型
    体积/MiB
    帧率/
    (帧·s−1
    正常 轻微跑偏 严重跑偏 均值
    CCFM 31.1 88.8 97.4 80.5 98.0 92.0 61.5 52.2
    HSFPN 28.2 83.5 97.6 81.8 98.9 92.8 55.6 53.2
    BiFPN 30.4 94.5 97.1 80.4 98.7 92.1 60.3 50.3
    CAA-HSFPN 28.7 86.7 98.4 83.3 98.9 93.5 56.5 48.9
    下载: 导出CSV

    表  4   改进RT−DETR消融实验结果

    Table  4   Results of improved RT-DETR ablation experiments

    FRE−
    Block
    CAA−
    HSFPN
    参数
    量/106
    FLOPs/G mAP@0.5/% 模型
    体积/MiB
    帧率/
    (帧·s−1
    正常 轻微跑偏 严重跑偏 均值
    × × 31.1 88.8 97.4 80.5 98.0 92.0 61.5 52.2
    × 24.6 76.1 98.8 82.9 99.1 93.6 49.1 41.9
    × 28.7 86.7 98.4 83.3 98.9 93.5 56.5 48.9
    22.7 71.0 98.3 86.0 99.2 94.5 44.0 41.0
    下载: 导出CSV

    表  5   输送带跑偏数据集上各模型实验结果

    Table  5   Experimental results of each model on conveyor belt deviation data set

    模型 参数量/106 FLOPs/G mAP@0.5/% 模型
    体积/MiB
    帧率/
    (帧·s−1
    正常 轻微跑偏 严重跑偏 均值
    TOOD 32.0 199 97.2 77.4 88.0 87.5 247.2 22.2
    ATSS 38.9 110 97.1 78.8 84.9 86.9 298.3 11.4
    Deformable DETR 40.1 193 92.6 59.0 87.5 79.9 486.0 16.2
    Conditional DETR 43.4 101 90.6 60.6 86.8 79.3 508.9 23.5
    YOLOv7 36.5 103.2 95.7 86.8 93.8 92.1 73.0 55.5
    YOlOv8m 25.8 78.7 95.9 84.2 92.7 91.0 50.8 60.8
    YOlOv9c 50.7 236.6 96.3 85.5 95.7 92.5 100.3 29.1
    Faster−YOLOv7 22.7 35.6 95.1 86.5 94.9 92.2 45.0 93.9
    SlimNeck−YOLOv7 31.4 90.4 94.5 85.6 93.3 91.1 61.6 56.4
    GAM−YOLOv8 34.0 85.2 96.4 84.2 93.7 91.4 68.4 61.7
    本文方法 22.7 71.0 98.3 86.0 99.2 94.5 44.0 41.0
    下载: 导出CSV
  • [1]

    CHU Qi,MENG Guoying,FAN Xun. Analysis of speed and belt deviation of the conveyor belt[J]. Advanced Materials Research,2011,339:444-447.

    [2] 徐世昌,程刚,袁敦鹏,等. 基于三维点云的带式输送机跑偏及堆煤监测方法[J]. 工矿自动化,2022,48(9):8-15,24.

    XU Shichang,CHENG Gang,YUAN Dunpeng,et al. Belt conveyor deviation and coal stacking monitoring method based on three-dimensional point cloud[J]. Journal of Mine Automation,2022,48(9):8-15,24.

    [3]

    ZHANG Mengchao,SHI Hao,YU Yan,et al. A computer vision based conveyor deviation detection system [J]. 2020,10(7). DOI:10.3390/ app10072402.

    [4]

    ZHANG Mengchao,JIANG Kai,CAO Yueshuai,et al. A deep learning-based method for deviation status detection in intelligent conveyor belt system[J]. Journal of Cleaner Production,2022,363. DOI:10.1016/j. jclepro.2022.132575.

    [5]

    XU Xinchao,ZHAO Hanguang,FU Xiaotian,et al. Real-time belt deviation detection method based on depth edge feature and gradient constraint[J]. Sensors,2023,23(19). DOI: 10.3390/s23198208.

    [6]

    WU Xiangfan,WANG Chusen,TIAN Zuzhi,et al. Research on belt deviation fault detection technology of belt conveyors based on machine vision[J]. Machines,2023,11(12). DOI: 10.3390/machines11121039.

    [7]

    LIU Yi,MIAO Changyun,LI Xianguo,et al. Research on deviation detection of belt conveyor based on inspection robot and deep learning[EB/OL]. [2024-06-10]. https://onlinelibrary.wiley.com/doi/10.1155/2021/3734560.

    [8]

    ZHAO Yian,LYU Wenyu,XU Shangliang,et al. DETRs beat YOLOs on real-time object detection[EB/OL]. [2024-06-10]. https://arxiv.org/html/2304.08069v3.

    [9]

    CHEN Jierun,KAO S H,HE Hao,et al. Run,don't walk:chasing higher FLOPS for faster neural networks[EB/OL]. [2024-06-10]. https://arxiv.org/abs/2303.03667v3.

    [10]

    DING Xiaohan,ZHANG Xiangyu,MA Ningning,et al. RepVGG:making VGG-style ConvNets great again[EB/OL]. [2024-06-10]. https://arxiv.org/abs/2101.03697.

    [11]

    OUYANG Daliang,HE Su,ZHAN Guozhong,et al. Efficient multi-scale attention module with cross-spatial learning[C]. IEEE International Conference on Acoustics,Speech and Signal Processing,Rhodes Island,2023:776-780.

    [12]

    CHEN Yifei,ZHANG Chenyan,CHEN Ben,et al. Accurate leukocyte detection based on deformable-DETR and multi-level feature fusion for aiding diagnosis of blood diseases[J]. Computers in Biology and Medicine,2024,170. DOI: 10.1016/j.compbiomed.2024.107917.

    [13]

    CAI Xinhao,LAI Qiuxia,WANG Yuwei,et al. Poly kernel inception network for remote sensing detection[EB/OL]. [2024-06-10]. https://arxiv.org/abs/2403.06258v2.

    [14]

    TAN Mingxing,PANG Ruoming,LE Q V,et al. EfficientDet:scalable and efficient object detection[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle,2020:10778-10787.

    [15]

    FENG Chengjian,ZHONG Yujie,GAO Yu,et al. TOOD:task-aligned one-stage object detection[C]. IEEE/CVF International Conference on Computer Vision,Montreal,2021:3490-3499.

    [16]

    ZHANG Shifeng,CHI Cheng,YAO Yongqiang,et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection[EB/OL]. [2024-06-10]. https://arxiv.org/abs/1912.02424v4.

    [17]

    ZHU Xizhou,SU Weijie,LU Lewei,et al. Deformable DETR:deformable transformers for end-to-end object detection[EB/OL]. [2024-06-10]. https://arxiv.org/pdf/2010.04159v1.

    [18]

    MENG Depu,CHEN Xiaokang,FAN Zejia,et al. Conditional DETR for fast training convergence[C]. IEEE/CVF International Conference on Computer Vision,Montreal,2021:3651-3660.

    [19]

    WANG C Y,BOCHKOVSKIY A,LIAO H Y M. YOLOv7:trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Vancouver,2023:7464-7475.

    [20]

    REIS D,KUPEC J,HONG J,et al. Real-time flying object detection with YOLOv8[EB/OL]. [2024-06-10]. https://arxiv.org/abs/2305.09972.

    [21]

    WANG C Y,YEH I H,MARK LIAO H Y M. YOLOv9:learning what you want toLearn using programmable gradient information[C]. European Conference on Computer Vision,Milan,2024:1-21.

    [22] 唐俊,李敬兆,石晴,等. 基于Faster−YOLOv7的带式输送机异物实时检测[J]. 工矿自动化,2023,49(11):46-52,66.

    TANG Jun,LI Jingzhao,SHI Qing,et al. Real time detection of foreign objects in belt conveyors based on Faster-YOLOv7[J]. Journal of Mine Automation,2023,49(11):46-52,66.

    [23] 冯恒健,韩李涛,张鹏飞,等. 基于改进YOLOv7的高效行人检测方法[J]. 计算机应用,2024,44(增刊1):290-296.

    FENG Hengjian,HAN Litao,ZHANG Pengfei,et al. Efficient Pedestrian Detection Method based on improved YOLOv7[J]. Journal of Computer Applications,2019,44(S1):290-296.

    [24]

    WANG Zhenyue,YUAN Guowu,ZHOU Hao,et al. Foreign-object detection in high-voltage transmission line based on improved YOLOv8m[J]. Applied Sciences,2023,13(23). DOI: 10.3390/app132312775.

  • 期刊类型引用(10)

    1. 韩晓冰,王鑫磊,周远国,刘洋. 基于DNN的煤矿富水区探测反演方法研究. 煤炭技术. 2024(04): 140-145 . 百度学术
    2. 郭瑞,董振良,乔鹏举,闫涛,苗壮,田丰. 基于CNN的矿井富水区电磁反演研究. 西安科技大学学报. 2023(06): 1186-1194 . 百度学术
    3. 周恒心,杨焱钧,程继东,姜希印,刘高强. 透射槽波地震勘探在济宁二号煤矿的应用. 陕西煤炭. 2022(02): 63-66+100 . 百度学术
    4. 王智聪,张军. 瞬变电磁法在磷矿富水性中的探测方法研究. 工程地球物理学报. 2022(06): 769-775 . 百度学术
    5. 马彦龙,朱书阶,勾永全,杨开珍,李刚,吴国庆,姜宇升. 透射槽波探测技术在同煤塔山矿的应用研究. 中国矿业. 2021(S1): 195-199 . 百度学术
    6. 范徳元,吴国庆,马彦龙. 槽波技术在阳泉矿区地质异常体探测中的应用研究. 煤田地质与勘探. 2021(04): 33-39 . 百度学术
    7. 田丰,焦翠翠,韩晓冰. 矿井富水区陷落柱成像研究. 工矿自动化. 2019(04): 77-82 . 本站查看
    8. 朱加锋,雷东记. 直流电法在西坡煤矿探测富水构造中的应用. 采矿技术. 2019(06): 163-165 . 百度学术
    9. 方刚,高波. 榆横北区地面瞬变电磁法探查含水层特征应用. 中国煤炭. 2018(11): 27-32+43 . 百度学术
    10. 许新刚,岳建华,张莹. 矿井瞬变电磁探测几个问题探讨. 煤炭与化工. 2017(04): 129-132 . 百度学术

    其他类型引用(6)

图(12)  /  表(5)
计量
  • 文章访问数:  65
  • HTML全文浏览量:  11
  • PDF下载量:  12
  • 被引次数: 16
出版历程
  • 收稿日期:  2024-08-29
  • 修回日期:  2025-03-22
  • 网络出版日期:  2025-03-26
  • 刊出日期:  2025-03-14

目录

    /

    返回文章
    返回