Feasibility study and optimal coal drawing process for fully mechanized caving in close-distance extra-thick coal seams
-
摘要:
目前针对近距离煤层厚度变化范围较大、煤层厚度超出正常开采高度的工作面的合理放煤工艺参数研究较少。以内蒙古平庄煤业(集团)有限责任公司西露天煤矿011N1−1工作面为研究对象,开展了近距离特厚煤层综放开采可行性及合理放煤工艺研究。首先,通过理论分析计算出近距离特厚煤层上方021N2工作面开采后底板最大破坏深度为3.88 m,小于011N1−1工作面与021N2工作面之间的距离,表明对下煤层011N1−1工作面进行综放开采是可行的。然后,结合理论分析与现场实测,采用模糊数学方法量化了煤体单轴抗压强度、煤层埋深、煤层厚度、煤体裂隙发育程度、顶板级别及煤层夹矸厚度对顶煤冒放性的影响,基于隶属度函数评定011N1−1工作面顶煤冒放性为中等水平。最后,基于PFC 2D离散元颗粒流软件建立了放煤数值模型,分析了不同采放比和放煤方式对顶煤采出率的影响,发现当煤层厚度超过正常开采高度时,将工作面采放比定为1∶4.5可有效适应煤层厚度变化,此时对顶煤采出率的影响较小,且采用三轮放煤工艺可有效提高顶煤采出率。现场放煤效果表明,优化放煤工艺后,随着煤层厚度的增大,增大采放比能够较好地适应地质条件变化,显著提高工作面顶煤采出量。
Abstract:Research on optimal coal drawing parameters for working faces with significant variation in seam thickness, where the thickness exceeds the standard mining height in close-distance coal seams, has been limited. This study focused on the feasibility and optimal coal drawing process for fully mechanized caving in the 011N1−1 working face of the Xilutian Coal Mine, Pingzhuang Coal Industry (Group) Co., Ltd., Inner Mongolia. First, theoretical analysis determined that the maximum damage depth of the floor caused by mining in the overlying 021N2 working face was 3.88 m, which was less than the distance between the 011N1−1 and 021N2 working faces. This finding confirmed the feasibility of fully mechanized caving for the underlying 011N1−1 working face. Subsequently, using a combination of theoretical analysis and field measurements, the study employed a fuzzy mathematics method to quantify the effects of uniaxial compressive strength, seam burial depth, seam thickness, coal fracture development, roof grade, and interlayer gangue thickness on the caving characteristics of the top coal. Membership function evaluation indicated that the top coal caving tendency of the 011N1−1 working face were at a moderate level. Finally, a coal drawing numerical model was established using the PFC 2D discrete element particle flow software to analyze the effects of different cutting-to-drawing ratios and coal drawing methods on the recovery rate of the top coal. The results revealed that, when the seam thickness exceeded the standard mining height, setting the cutting-to-drawing ratio to 1∶4.5 effectively accommodated thickness variations with minimal impact on top coal recovery. Moreover, a three-cycle coal drawing process significantly improved the recovery rate. Field observations demonstrated that, after optimizing the coal drawing process, increasing the instantaneous cutting-to-drawing ratio with seam thickness better adapted to geological conditions and significantly enhanced top coal recovery in the working face.
-
-
表 1 顶煤冒放性分类
Table 1 Classification of top coal caving characteristics
顶煤冒放性类别 Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ F值 0~0.20 0.20~0.40 0.40~0.55 0.55~0.75 0.75~1.00 表 2 放煤数值模型参数
Table 2 Parameters of numerical model for coal drawing
岩性 颗粒粒径/m 弹性模量/GPa 密度/(kg·m−3) 摩擦角/(°) 法向刚度/(N·m−1) 切向刚度/(N·m−1) 摩擦因数 煤 0.08~0.12 0.36 1 371 18.21 0.36×108 0.36×108 0.8 泥岩 0.15~0.20 1.20 2 245 27.54 1.20×108 1.20×108 0.8 辉绿岩 0.25~0.30 4.48 2 660 31.17 4.48×108 4.48×108 0.8 表 3 放煤方案
Table 3 Coal drawing schemes
方案 割煤高度/m 放煤高度/m 采放比 放煤方式 1 4.0 12.00 1∶3.0 双轮顺序 2 2.9 13.05 1∶4.5 双轮顺序 3 2.9 13.05 1∶4.5 三轮顺序 表 4 不同采放比下顶煤采出量
Table 4 Top coal recovery under different cutting-to-drawing ratios
日期 采放比 采出量/(t·m−1) 日期 采放比 采出量/(t·m−1) 1月1日 1∶1.88 1082.50 1月8日 1∶4.11 1917.92 1月2日 1∶3.94 1854.17 1月9日 1∶4.51 2067.08 1月3日 1∶3.78 1795.83 1月10日 1∶4.42 2036.19 1月4日 1∶3.38 1645.42 1月11日 1∶4.44 2045.83 1月5日 1∶3.89 1835.00 1月12日 1∶4.59 2099.10 1月6日 1∶4.18 1946.67 1月13日 1∶2.89 1461.33 1月7日 1∶3.90 1839.17 1月14日 1∶2.89 1461.33 -
[1] 庞义辉,关书方,姜志刚,等. 综放工作面围岩控制与智能化放煤技术现状及展望[J]. 工矿自动化,2024,50(9):20-27. PANG Yihui,GUAN Shufang,JIANG Zhigang,et al. Current status and prospects of surrounding rock control and intelligent coal drawing technology in fully mechanized caving face[J]. Journal of Mine Automation,2024,50(9):20-27.
[2] 吕延森,张学亮,阮进林,等. 保德煤矿智能综放开采关键技术及展望[J]. 煤炭科学技术,2022,50(增刊1):233-243. LYU Yansen,ZHANG Xueliang,RUAN Jinlin,et al. Key technology and prospect of intelligent fully-mechanized caving mining in Baode Coal Mine[J]. Coal Science and Technology,2022,50(S1):233-243.
[3] 王家臣. 我国综放开采40年及展望[J]. 煤炭学报,2023,48(1):83-99. WANG Jiachen. 40 years development and prospect of longwall top coal caving in China[J]. Journal of China Coal Society,2023,48(1):83-99.
[4] 张志勇,刘媛媛,李延锋. 近距离下煤层上覆岩层裂隙发育规律与上行开采研究[J]. 煤炭工程,2024,56(1):113-118. ZHANG Zhiyong,LIU Yuanyuan,LI Yanfeng. Development law of fractures in overlying strata of lower seam of contiguous seams in upward mining[J]. Coal Engineering,2024,56(1):113-118.
[5] 李杨,雷明星,郑庆学,等. 近距离“薄−中−厚” 交错分布煤层群上行协调开采定量判别研究[J]. 煤炭学报,2019,44(增刊2):410-418. LI Yang,LEI Mingxing,ZHENG Qingxue,et al. Quantitative criterion on coordinated ascending mining in close multiple "thin-medium-thick" coal seams[J]. Journal of China Coal Society,2019,44(S2):410-418.
[6] 倪超. 复杂地质条件下极近距离煤层一次采全高可行性研究[J]. 中国矿业,2021,30(2):177-182. DOI: 10.12075/j.issn.1004-4051.2021.02.004 NI Chao. Feasibility study on mining overall height in one times of extremely close distance coal seam under complex geological conditions[J]. China Mining Magazine,2021,30(2):177-182. DOI: 10.12075/j.issn.1004-4051.2021.02.004
[7] 阮进林,季亮,高鹏,等. 厚煤层综放煤矸流动规律与工艺参数研究[J]. 煤炭科学技术,2022,50(增刊2):26-32. RUAN Jinlin,JI Liang,GAO Peng,et al. Study on the flow rules and process parameters of coal gangue in thick coal seam[J]. Coal Science and Technology,2022,50(S2):26-32.
[8] 张宁波,刘长友,陈宝宝,等. 极近距离煤层下位厚煤层综放煤矸放落流动规律及放煤工艺参数确定[J]. 采矿与安全工程学报,2021,38(5):911-918. ZHANG Ningbo,LIU Changyou,CHEN Baobao,et al. Determination of fully-mechanized top coal caving law and parameters of thick lower seam in ultra-close multiple-seams[J]. Journal of Mining & Safety Engineering,2021,38(5):911-918.
[9] 鲁岩,段现军,王晓. 近距离煤层同采下位厚煤层综放工艺参数研究[J]. 煤炭科学技术,2014,42(4):23-26. LU Yan,DUAN Xianjun,WANG Xiao. Study on fully-mechanized caving technique parameters in contiguous seams and lower thick seam by simultaneous mining[J]. Coal Science and Technology,2014,42(4):23-26.
[10] 蒋银华,梁峰,李志华. 近距离煤层合并综放开采放煤工艺优化研究[J]. 中国煤炭,2019,45(10):81-86. DOI: 10.3969/j.issn.1006-530X.2019.10.019 JIANG Yinhua,LIANG Feng,LI Zhihua. Optimization research on top coal caving technology of fully mechanized caving mining in close-distance combined seams[J]. China Coal,2019,45(10):81-86. DOI: 10.3969/j.issn.1006-530X.2019.10.019
[11] 张金才,刘天泉. 论煤层底板采动裂隙带的深度及分布特征[J]. 煤炭学报,1990,15(2):46-55. DOI: 10.3321/j.issn:0253-9993.1990.02.002 ZHANG Jincai,LIU Tianquan. On depth of fissured zone in seam floor resulted from coal extraction and its distribution characteristics[J]. Journal of China Coal Society,1990,15(2):46-55. DOI: 10.3321/j.issn:0253-9993.1990.02.002
[12] 刘刚,张风达,张志巍,等. 厚煤层综放开采底板破坏特征研究[J]. 煤炭技术,2022,41(12):67-70. LIU Gang,ZHANG Fengda,ZHANG Zhiwei,et al. Study on floor failure characteristics of fully mechanized top coal caving in thick coal seam[J]. Coal Technology,2022,41(12):67-70.
[13] 范世民,胡学军. 放顶煤开采顶煤冒放性分类及其在潞安矿区的应用[J]. 煤炭学报,2005,30(2):177-181. DOI: 10.3321/j.issn:0253-9993.2005.02.010 FAN Shimin,HU Xuejun. The classification of top coal cavability and its application in Lu'an Coal Mine[J]. Journal of China Coal Society,2005,30(2):177-181. DOI: 10.3321/j.issn:0253-9993.2005.02.010
[14] 赵泽潭. 塔山煤矿8116工作面顶煤冒放性的研究与评价[J]. 煤炭与化工,2021,44(3):15-17,20. ZHAO Zetan. Research and evaluation of the top coal caving of 8116 working face in Tashan Mine[J]. Coal and Chemical Industry,2021,44(3):15-17,20.
[15] 王兆会,王家臣,王凯. 综放开采顶煤冒放性预测模型的构建与应用[J]. 岩石力学与工程学报,2019,38(1):49-62. WANG Zhaohui,WANG Jiachen,WANG Kai. A model for top-coal cavability assessment and its application in longwall top-coal caving[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(1):49-62.
[16] 樊秀峰,简文彬. 砂岩疲劳特性的超声波速法试验研究[J]. 岩石力学与工程学报,2008,27(3):557-563. DOI: 10.3321/j.issn:1000-6915.2008.03.016 FAN Xiufeng,JIAN Wenbin. Experimental research on fatigue characteristics of sandstone using ultrasonic wave velocity method[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(3):557-563. DOI: 10.3321/j.issn:1000-6915.2008.03.016
[17] 张飞,孙二伟,张巍,等. 路天煤矿1604综放工作面顶煤冒放性评价[J]. 工矿自动化,2009,35(9):34-37. ZHANG Fei,SUN Erwei,ZHANG Wei,et al. Evaluation of top coal caving characteristics for 1604 fully mechanized caving face of lutian coal mine[J]. Industry and Mine Automation,2009,35(9):34-37.
[18] 王家臣,张锦旺,陈祎. 基于BBR体系的提高综放开采顶煤采出率工艺研究[J]. 矿业科学学报,2016,1(1):38-48. WANG Jiachen,ZHANG Jinwang,CHEN Yi. Research on technology of improving top-coal recovery in longwall top-coal caving mining based on BBR system[J]. Journal of Mining Science and Technology,2016,1(1):38-48.
[19] 王家臣,宋正阳,张锦旺,等. 综放开采顶煤放出体理论计算模型[J]. 煤炭学报,2016,41(2):352-358. WANG Jiachen,SONG Zhengyang,ZHANG Jinwang,et al. Theoretical model of drawing body in LTCC mining[J]. Journal of China Coal Society,2016,41(2):352-358.
[20] 王家臣,潘卫东,张国英,等. 图像识别智能放煤技术原理与应用[J]. 煤炭学报,2022,47(1):87-101. WANG Jiachen,PAN Weidong,ZHANG Guoying,et al. Principles and applications of image-based recognition of withdrawn coal and intelligent control of draw opening in longwall top coal caving face[J]. Journal of China Coal Society,2022,47(1):87-101.
[21] 潘卫东,李新源,员明涛,等. 基于顶煤运移跟踪仪的自动化放煤技术原理及应用[J]. 煤炭学报,2020,45(增刊1):23-30. PAN Weidong,LI Xinyuan,YUN Mingtao,et al. Technology principle and field application of automatic coal drawing based on the top coal tracker[J]. Journal of China Coal Society,2020,45(S1):23-30.