双悬臂截割机器人相对动力学建模与力位混合控制研究

刘鹏, 周昊晨, 马宏伟, 曹现刚, 张旭辉, 段学超, 毛清华, 田海波, 薛旭升, 王川伟

刘鹏,周昊晨,马宏伟,等. 双悬臂截割机器人相对动力学建模与力位混合控制研究[J]. 工矿自动化,2024,50(10):80-89. DOI: 10.13272/j.issn.1671-251x.2024070104
引用本文: 刘鹏,周昊晨,马宏伟,等. 双悬臂截割机器人相对动力学建模与力位混合控制研究[J]. 工矿自动化,2024,50(10):80-89. DOI: 10.13272/j.issn.1671-251x.2024070104
LIU Peng, ZHOU Haochen, MA Hongwei, et al. Relative dynamics modeling and force-position hybrid control of dual-arm cutting robot[J]. Journal of Mine Automation,2024,50(10):80-89. DOI: 10.13272/j.issn.1671-251x.2024070104
Citation: LIU Peng, ZHOU Haochen, MA Hongwei, et al. Relative dynamics modeling and force-position hybrid control of dual-arm cutting robot[J]. Journal of Mine Automation,2024,50(10):80-89. DOI: 10.13272/j.issn.1671-251x.2024070104

双悬臂截割机器人相对动力学建模与力位混合控制研究

基金项目: 陕西省教育厅服务地方专项项目(23JC053);陕西省自然科学基础研究计划面上项目(S2024-JC-YB-2526)。
详细信息
    作者简介:

    刘鹏(1984—),男,陕西渭南人,讲师,博士,研究方向为机器人技术及应用,E-mail:liupeng@xust.edu.cn

  • 中图分类号: TD632

Relative dynamics modeling and force-position hybrid control of dual-arm cutting robot

  • 摘要: 双悬臂截割机器人可解决传统单臂掘进机在截割大尺寸断面时效率低下的难题,但其与煤岩的动态交互影响控制性能。现有研究以双臂接触同一对象形成运动闭链为前提,无法满足双悬臂截割机器人双臂运动及末端截割头输出力的控制要求。针对该问题,设计了一种基于机器人相对动力学模型的力位混合控制系统。建立双悬臂截割机器人运动学和动力学模型,基于机器人的相对雅可比矩阵及虚位移与虚功原理推导出机器人的相对动力学模型,通过单一变量同时描述机器人双臂的运动状态,将机器人双臂独立的动力学模型整合为一个整体。基于机器人的相对动力学模型,设计了机器人双臂力位混合控制系统,通过李雅普诺夫函数验证了系统的稳定性和可行性。仿真结果表明:双悬臂截割工艺较单悬臂截割拥有更大的工作空间,具有一次性实现大断面截割的能力;双悬臂截割机器人力位混合控制系统能够完成对期望相对位置和期望相对力的同步跟踪,对截割头期望位置跟踪的绝对误差在0.313 2 m以内,均方根误差为0.144 7 m。
    Abstract: The dual-arm cutting robot addresses the low efficiency of traditional single-arm roadheaders when cutting large cross-sections. However, its dynamic interaction with coal-rock affects control performance. In current studies, both arms of the dual-arm cutting robot interact with the same object, forming a closed kinematic chain, which fails to meet the control requirements for independent arm movement and the output force of each cutting head. To solve this issue, a force-position hybrid control system based on the robot’s relative dynamics model was designed. The kinematic and dynamics models of the dual-arm cutting robot were established, with the relative dynamics model derived using the robot’s relative Jacobian matrix and principles of virtual displacement and virtual work. This model used a single variable to describe the motion states of both arms, integrating their independent dynamics models into a unified one. Based on this relative dynamics model, a force-position hybrid control system was developed for the robot’s dual arms, with system stability and feasibility verified via the Lyapunov function. Simulation results indicated that the dual-arm cutting process had a larger workspace compared to single-arm cutting, allowing for efficient large cross-section cutting. The force-position hybrid control system enabled synchronized tracking of expected relative position and force, with the absolute error in tracking the target cutter position kept within 0.3132 m and a root mean square error of 0.1447 m.
  • 图  1   双悬臂截割机器人模型

    Figure  1.   Dual-arm cutting robot model

    图  2   双悬臂截割机器人结构

    Figure  2.   Dual-arm cutting robot structure

    图  3   基于相对动力学模型的双悬臂截割机器人相对位置控制器

    Figure  3.   Relative position controller for dual-arm cutting robot based on relative dynamics model

    图  4   基于相对动力学模型的双悬臂截割机器人相对力控制器

    Figure  4.   Relative force controller for dual-arm cutting robot based on relative dynamics model

    图  5   基于相对动力学模型的双悬臂截割机器人力位混合控制系统

    Figure  5.   Force-position hybrid control system for dual-arm cutting robot based on relative dynamics model

    图  6   单悬臂与双悬臂截割工艺的工作空间

    Figure  6.   Workspace for single-arm cutting and dual-arm cutting processes

    图  7   双悬臂截割机器人截割头S形运动轨迹

    Figure  7.   S-shaped motion trajectories of cutting heads of dual-arm cutting robot

    图  8   双悬臂截割机器人两截割头的期望相对位置

    Figure  8.   Expected relative position for two cutting heads of dual-arm cutting robot

    图  9   双悬臂截割机器人关节输出力变化

    Figure  9.   Joint output force variations of dual-arm cutting robot

    图  10   力位混合控制系统对截割头相对位置的控制结果

    Figure  10.   Relative position tracking results of cutting head by force-position hybrid control system

    图  11   力位混合控制系统对截割头相对力的控制结果

    Figure  11.   Relative force tracking results of cutting heads by force-position hybrid control system

    图  12   初始相对位置存在误差时力位控制结果

    Figure  12.   Tracking results of force-position with errors in initial relative position

    表  1   双悬臂截割机器人的D−H参数

    Table  1   D-H parameters of dual-arm cutting robot

    关节编号 θi/rad di/m ai/m αi/rad
    i=1 [0, π/2] 0 a1 0
    i=2 [−π/2,0] 0 1 π/2
    i=3 [0, π/2] 0 [4.18,4.73] 0
    i=4 [−π/2,0] 0 a4 0
    i=5 [0, π/2] 0 1 π/2
    i=6 [0, π/2] 0 [4.18,4.73] 0
    下载: 导出CSV

    表  2   处于S形轨迹拐点处的双悬臂截割机器人关节变量

    Table  2   Joint variables of dual-arm cutting robot at inflection points of S-shaped trajectories

    端点
    序号
    移动平台
    推移量/m
    θ2/rad θ3/rad a3/m θ5/rad θ6/rad a6/m
    1 1.0 0 π/3 4.73 0 π/3 4.73
    2 1.1 −π/2 π/3 4.18 π/2 π/3 4.18
    3 1.3 −π/2 2π/9 4.18 π/2 2π/9 4.18
    4 1.5 0 2π/9 4.73 0 2π/9 4.73
    5 1.7 0 π/9 4.18 0 π/9 4.18
    6 1.9 −π/2 π/9 4.73 π/2 π/9 4.73
    7 2.1 −π/2 0 4.18 π/2 0 4.18
    8 2.3 0 0 4.73 0 0 4.73
    下载: 导出CSV
  • [1] 张旭辉,刘永伟,毛清华,等. 煤矿悬臂式掘进机智能控制技术研究及进展[J]. 重型机械,2018(2):22-27.

    ZHANG Xuhui,LIU Yongwei,MAO Qinghua,et al. Research and progress on intelligent control technology of boom-type roadheader in coal mine[J]. Heavy Machinery,2018(2):22-27.

    [2] 马宏伟,王鹏,张旭辉,等. 煤矿巷道智能掘进机器人系统关键技术研究[J]. 西安科技大学学报,2020,40(5):751-759.

    MA Hongwei,WANG Peng,ZHANG Xuhui,et al. Research on key technology of intelligent tunneling robotic system in coal mine[J]. Journal of Xi'an University of Science and Technology,2020,40(5):751-759.

    [3]

    CABALLERO A,BEJAR M,RODRIGUEZ-CASTAÑO A,et al. Motion planning with dynamics awareness for long reach manipulation in aerial robotic systems with two arms[J]. International Journal of Advanced Robotic Systems,2018,15(3):172988141877052-172988141877052.

    [4]

    SHEN Haoyu,LIU Yanli,WU Hongtao. High effective inverse dynamics modelling for dual-arm robot[J]. AIP Conference Proceedings,2018,1967(1). DOI: 10.1063/1.5039135.

    [5]

    WANG Jian,WANG Jian,ZHOU Lili,et al. Dynamic modeling and cooperative process simulation in cooperative dual-arm robot based on adams[J]. Journal of Physics:Conference Series,2020,1621(1). DOI: 10.1088/1742-6596/1621/1/012041.

    [6] 程靖,陈力. 空间机器人双臂捕获航天器后姿态管理、辅助对接操作一体化ELM神经网络控制[J]. 机器人,2017,39(5):724-732.

    CHENG Jing,CHEN Li. ELM neural network control of attitude management and auxiliary docking maneuver after dual-arm space robot capturing spacecraft[J]. Robot,2017,39(5):724-732.

    [7] 刘佳,刘荣. 双臂协调机械手动力学建模的新方法[J]. 北京航空航天大学学报,2016,42(9):1903-1910.

    LIU Jia,LIU Rong. New approach for dynamics modeling of dual-arm cooperating manipulators[J]. Journal of Beijing University of Aeronautics and Astronautics,2016,42(9):1903-1910.

    [8]

    JAMISOLA R,IBIKUNLE F. Investigating task prioritization and holistic coordination using relative Jacobian for combined 3-arm cooperating parallel manipulators[J]. Journal of Advanced Computational Intelligence and Intelligent Informatics,2016,20(1):117-123. DOI: 10.20965/jaciii.2016.p0117

    [9] 董楸煌,陈力,李海芸,等. 双臂空间机器人捕获目标的力/位协调控制[J]. 系统仿真学报,2017,29(2):424-429.

    DONG Qiuhuang,CHEN Li,LI Haiyun,et al. Force/position control for dual-arm space robot capturing object[J]. Journal of System Simulation,2017,29(2):424-429.

    [10] 张建华,许晓林,刘璇,等. 双臂协调机器人相对动力学建模[J]. 机械工程学报,2019,55(3):34-42. DOI: 10.3901/JME.2019.03.034

    ZHANG Jianhua,XU Xiaolin,LIU Xuan,et al. Relative dynamic modeling of dual-arm coordination robot[J]. Journal of Mechanical Engineering,2019,55(3):34-42. DOI: 10.3901/JME.2019.03.034

    [11] 王登峰,王丽娟,徐敏. 关节一体化机器人动力学建模与伺服系统控制[J]. 组合机床与自动化加工技术,2018(8):112-117,123.

    WANG Dengfeng,WANG Lijuan,XU Min. Dynamic modeling and servo system control of joint robot[J]. Modular Machine Tool & Automatic Manufacturing Technique,2018(8):112-117,123.

    [12]

    JING Xin,GAO Haibo,WANG Yaobing,et al. Cooperative compliance control of the dual-arm manipulators with elastic joints[J]. Journal of Mechanical Science and Technology,2021,35(12):5689-5697. DOI: 10.1007/s12206-021-1138-3

    [13] 艾海平,陈力. 空间机器人双臂捕获航天器操作的力/位置控制[J]. 哈尔滨工程大学学报,2020,41(12):1847-1853.

    AI Haiping,CHEN Li. Force/position fuzzy control of space robot capturing spacecraft by dual-arm clamping[J]. Journal of Harbin Engineering University,2020,41(12):1847-1853.

    [14]

    ZHANG Fuhai,QU Jiadi,LIU He,et al. A pose/force symmetric coordination method for a redundant dual-arm robot[J]. Assembly Automation,2018,38(5):678-688. DOI: 10.1108/AA-12-2017-171

    [15]

    JIANG Yiming,WANG Yaonan,MIAO Zhiqiang,et al. Composite-learning-based adaptive neural control for dual-arm robots with relative motion[J]. IEEE Transactions on Neural Networks and Learning Systems,2020,33(3):1010-1021.

    [16]

    JIANG Wei,YAN Yu,YU Lianqing,et al. Research on dual-arm coordination motion control strategy for power cable mobile robot[J]. Transactions of the Institute of Measurement and Control,2019,41(1). DOI: 10.1177/0142331218822717.

    [17] 赵明辉. 双臂并联煤矸石分拣机器人及其轨迹规划研究[J]. 工矿自动化,2020,46(9):57-63.

    ZHAO Minghui. Research on dual-arm parallel coal gangue sorting robot and its trajectory planning[J]. Industry and Mine Automation,2020,46(9):57-63.

    [18] 李贺立,杨冬,杨德志,等. 基于阻抗控制的双臂机器人协调搬运方法研究[J]. 机床与液压,2017,45(21):64-67,91.

    LI Heli,YANG Dong,YANG Dezhi,et al. Research for dual-arm robot coordinated handling methods based on impedance control[J]. Machine Tool & Hydraulics,2017,45(21):64-67,91.

    [19] 刘江文,徐敏. 双臂机器人动力学建模与伺服系统控制[J]. 机械设计与制造,2019(11):256-260.

    LIU Jiangwen,XU Min. Dynamic modeling and servo system control of dual-arm[J]. Machinery Design & Manufacture,2019(11):256-260.

    [20] 郑晓薇,胡陟,倪双涛,等. 基于力同步的双臂手术机器人自适应阻抗控制[J]. 传感器与微系统,2023,42(4):95-98.

    ZHENG Xiaowei,HU Zhi,NI Shuangtao,et al. Adaptive impedance control of dual-arm surgical robot based on force synchronization[J]. Transducer and Microsystem Technologies,2023,42(4):95-98.

    [21] 张磊,周开平,张宁波,等. 悬臂式掘进机自动截割控制系统研究[J]. 金属矿山,2022(6):144-149.

    ZHANG Lei,ZHOU Kaiping,ZHANG Ningbo,et al. Research on automatic cutting control system of cantilever roadheader[J]. Metal Mine,2022(6):144-149.

  • 期刊类型引用(7)

    1. 尚国银. 煤矿外因火灾防治与应急处置技术研究. 中国安全科学学报. 2024(S1): 274-279 . 百度学术
    2. 王彦文,张旭然,高彦,王寅生. 基于热路模型的矿用高压电缆内因火灾预警研究. 矿业科学学报. 2022(02): 225-232 . 百度学术
    3. 任晓伟,王振兴,王锐,康付如,王洋,韩东洋,王伟峰,齐龙辉,徐勇勇. 煤矿电缆火灾危险性研究. 煤矿安全. 2022(09): 151-156 . 百度学术
    4. 陈晓晶. 基于“云-边-端”协同的煤矿火灾智能化防控体系建设. 煤炭科学技术. 2022(12): 136-143 . 百度学术
    5. 方书博,罗浩,洪骁,郑雷. 隧道机器人电缆火灾参数仿真与试验研究. 电气应用. 2021(09): 41-49 . 百度学术
    6. 苟宝洋,吴兵,马一飞,苏敬亮,贾泽鹏. 基于Simtec的巴黎圣母院火灾数值模拟. 消防科学与技术. 2020(01): 49-51 . 百度学术
    7. 康文杰,周亮宇,王德明,李金帅. 煤最短自然发火期快速预测方法. 工矿自动化. 2019(05): 31-34 . 本站查看

    其他类型引用(2)

图(12)  /  表(2)
计量
  • 文章访问数:  76
  • HTML全文浏览量:  21
  • PDF下载量:  24
  • 被引次数: 9
出版历程
  • 收稿日期:  2024-07-29
  • 修回日期:  2024-10-15
  • 网络出版日期:  2024-10-22
  • 刊出日期:  2024-10-24

目录

    /

    返回文章
    返回