Current status and prospects of research on landslide disasters in mine slopes based on multi-source information fusion
-
摘要: 为克服单一信息源无法精确表征矿山滑坡灾害演化特征的问题,基于多源信息融合技术,从矿山边坡多源信息获取、矿山边坡多源信息融合、矿山边坡位移预测及滑坡风险评价3个方面概述了矿山边坡滑坡灾害研究进展。总结了典型的“天”“空”“地”边坡监测手段及“天−空−地”一体化协同监测方法;梳理了包含数据级、特征级和决策级融合的边坡多源信息融合流程;整理了位移与应力、位移与水文气象及其他不同类型的监测数据融合形式;阐述了基于多源信息融合的边坡位移预测及滑坡风险评价相关研究现状。基于当前矿山边坡滑坡灾害研究存在的灾害分析的准确性严重依赖监测数据质量、对岩石力学机理知识利用不足等问题,指出了矿山边坡滑坡灾害研究发展趋势:统一多源数据采集接入标准;开发监测数据与岩石力学机理融合的矿山边坡滑坡灾害分析方法;优化“天−空−地”多源信息的时空关联挖掘算法;加强基于多源信息融合的矿山边坡滑坡灾害预警平台建设。Abstract: In order to overcome the problem that a single information source cannot accurately characterize the evolution features of mining landslide disasters, based on multi-source information fusion technology, this paper summarizes the research progress of mine slope landslide disasters from three aspects: multi-source information acquisition of mine slopes, multi-source information fusion of mine slopes, and mine slope displacement prediction and landslide risk assessment. The study summarizes typical slope monitoring methods of "sky", "air", and "ground" , as well as integrated collaborative monitoring method of "sky-air-ground". The study sorts out the slope multi-source information fusion process that includes data level, feature level, and decision level fusion. The paper organizes the fusion forms of displacement and stress, displacement and hydrological and meteorological monitoring information, as well as other different types. This paper elaborates on the current research status of slope displacement prediction and landslide risk assessment based on multi-source information fusion. The accuracy of disaster analysis in current research on mine slope landslide disasters heavily depends on the quality of monitoring data and insufficient utilization of knowledge of rock mechanics mechanisms. Based on the above problems, the development trends of research on landslide disasters in mine slopes are pointed out. The multi-source data collection and access standards are unified. The method for analyzing landslide disasters in mine slopes is developed by integrating monitoring data with rock mechanics mechanisms. The spatiotemporal association mining algorithm for multi-source information from the "sky-air-ground" is optimized. The construction of a mine slope landslide disaster warning platform based on multi-source information fusion is strengthened.
-
0. 引言
粉尘是煤矿作业中的主要危害因素之一,对矿工身体健康危害极大[1-2]。长期暴露在高浓度的煤矿粉尘环境中,粉尘颗粒逐渐沉积于肺部,可能引发不可逆的纤维化病变[3-4],最终导致严重的肺部疾病。开展粉尘浓度连续监测不仅是保障工人健康的重要手段,还能为制定有效的粉尘防控策略提供科学依据,从而降低尘肺病的发生概率。
光散射法是粉尘浓度连续监测领域的重要技术,研究者围绕该方法在理论与应用方面进行了广泛探索。J. R. Patts等[5]开发了一种结合光散射监测仪与移动摄像设备的系统,用于评估工人的粉尘暴露水平。A. Konoshonkin等[6]通过物理光学近似法研究了复杂形状大颗粒的光散射行为。Lin Chengjun等[7]针对粒径反演不稳定问题,提出了一种基于多参数优化的解决方案。Cui Xiaojun等[8]优化了鞘流结构设计,提升了粉尘散射信号的检测精度。Zheng Xiuting等[9]分析了粒径、折射率和光波长对粉尘浓度监测的影响规律。戴珺等[10]通过改进反演算法显著提高了测量系统的稳定性和抗干扰能力。吴娟等[11]利用非线性特征向量提取技术与神经网络模型,实现了粉尘颗粒的粒径解析和特性识别。
然而,现有方法在煤矿井下高湿度环境中的应用仍存在一定局限性。当环境相对湿度达到或超过60%时,粉尘颗粒会发生显著的吸湿生长,导致粉尘浓度监测结果产生偏差[12]。针对该问题,C. Sioutas等[13]采用扩散干燥剂降低空气湿度,但需要定期维护干燥剂,以确保其正常工作。另外,一些研究尝试结合湿度传感器与经验算法,通过引入修正因子来补偿湿度对粉尘浓度的影响[14-16],但这种方法无法实时反映吸湿后粉尘颗粒粒径变化对浓度监测结果的影响,因此在一定程度上限制了监测的准确性。
为了提高煤矿井下高湿度环境下的粉尘浓度监测精度,通过观察不同湿度条件下煤矿粉尘吸湿生长的形貌特征,分析了湿度对煤矿粉尘颗粒粒径变化和粉尘浓度监测的影响规律;基于湿度环境下多角度光散射粉尘浓度监测实验,提出一种基于光散射原理的在线湿度补偿技术。
1. 煤矿粉尘颗粒吸湿生长形貌特征及粒径变化规律
为了提升煤矿粉尘浓度监测的实效性与精准度,需要实时捕捉粉尘颗粒吸湿状况的动态变化。因此,从微观层面出发,运用扫描电子显微镜,研究煤矿粉尘颗粒吸湿生长时所展现出的形貌特性及颗粒粒径变化规律。
1.1 实验准备
实验所用粉尘需接近煤矿实际环境中的特性。将采集自煤矿的原始粉尘进行研磨处理后,采用自动分样筛进行筛分,获得中位粒径不超过75 μm的颗粒样本,以确保其粒度满足实验要求。
实验仪器包括以下4种:
1) 扫描电子显微镜。用于观察粉尘颗粒在吸湿条件下的微观形貌变化,其技术参数:分辨率高于3.0 nm@30 kV,放大倍数为6~300 000,加速电压为0~30 kV;样品台支持X轴移动≤80 mm,Y轴移动≤60 mm,Z轴移动≤50 mm,旋转角度为360°连续,倾斜角度为−5~+90°,可容纳直径为80 mm的样品,最大样品直径为110 mm。
2) 粉尘采样器与分析天平。用于定量测定粉尘浓度。其中,粉尘采样器负载能力≥200 Pa,测量误差为±10%;分析天平的量程为120/42 g,分辨率分别为0.1 mg和0.01 mg。
3) 粒径分析仪。用于评估粉尘颗粒的粒径分布,测试范围为0~150 μm,精度为±10%。
4) 温湿度计。用于监测实验环境的温湿度条件,温度测量范围为−10~80 ℃,误差为±0.5 ℃;相对湿度测量范围为10%~99%,误差为±1%RH。
实验系统由粉尘喷射装置、温湿度控制设备、实验舱、加湿器和取样装置等组成。粉尘喷射装置负责将粉尘样本均匀分布于实验舱内,取样装置用于在不同温湿度条件下收集粉尘颗粒,为实验分析提供样本。通过温控和湿度调节设备,实现实验舱内环境的稳定控制,覆盖温度范围10~30 ℃及相对湿度范围30%~95%。实验舱如图1所示。
实验步骤如下:
1) 粒径分析。将实验粉尘置于温度为25 °C、相对湿度为30%的恒温恒湿箱中静置处理24 h,以确保其达到稳定状态。随后取出一部分粉尘样品,通过粒度分析仪对其颗粒分布进行检测,并详细记录分析结果。
2) 温湿度控制。启动环境实验舱的温湿度调节设备,将舱内温度稳定控制在(25±1)°C。根据实验要求,设置相对湿度范围为35%~98%,以模拟不同湿度条件下的实验环境。
3) 粉尘喷射。待舱内温湿度达到并稳定在预设值后,启动粉尘发生装置,将煤矿粉尘均匀释放到舱内。经过一段时间喷射操作后关闭装置,静待实验舱内的粉尘浓度达到平衡状态。
4) 电镜采样分析。在粉尘自然沉降至取样台的导电胶表面后,小心移除导电胶,并对样品进行喷金处理。将处理后的样品放入扫描电子显微镜中,观察煤矿粉尘颗粒吸湿生长后的微观形貌特征。
1.2 不同湿度下煤矿粉尘颗粒形貌特征变化
在高湿度环境下,粉尘颗粒会因吸湿作用发生尺寸增长的现象[17]。通过扫描电子显微镜对沉积在导电胶上的粉尘颗粒进行观察,记录不同湿度条件下颗粒的形貌变化。选取粒径为10 μm的粉尘颗粒作为研究对象,对其在吸湿生长过程中的微观形貌进行分析。将扫描电镜放大1 500倍,粒径10 μm煤矿粉尘颗粒的吸湿生长形貌特征如图2所示。
从图2可看出:当环境相对湿度低于40%时,粉尘颗粒表面相对粗糙,与原始状态对比,并未出现明显的吸湿现象;当湿度达到50%时,颗粒表面开始附着不同尺寸的小颗粒,粉尘颗粒开始发生吸湿生长;当湿度增至65%时,吸湿现象更加明显,颗粒表面附着了更多片状物质,且粉尘颗粒的粒径显著增大;当湿度达到80%时,吸湿生长现象更加显著,颗粒的粒径变化更为明显。可见,当环境相对湿度达到或超过50%时,粉尘颗粒开始显现吸湿生长现象。随着湿度的进一步增加,颗粒的粒径持续增大,湿度越高,煤矿粉尘颗粒的凝并生长速度越快,生成的颗粒结构更加紧密。
1.3 煤矿粉尘颗粒粒径与湿度的关系
为了进一步研究粉尘颗粒的吸湿生长规律,在湿度由35%升至98%的过程中,使用导电胶进行粉尘采样并确保发尘浓度保持恒定,通过扫描电子显微镜观察湿度升高过程中煤矿粉尘颗粒的粒径。绘制煤矿粉尘颗粒粒径与环境湿度的关系曲线,如图3所示。可看出煤矿粉尘颗粒粒径随着湿度的增加呈现指数型增长趋势,其拟合关系为
$$ D=D_0(1+kh^a) $$ (1) 式中:D为在相对湿度$ h $(通常取0~100%)下的粒径;D0为干燥条件下的粒径;k为吸湿性常数,其值与颗粒化学性质相关;a为指数参数,通常为1~2。
2. 煤矿粉尘浓度与湿度的关系
为了探究湿度对煤矿粉尘浓度的影响,首先在环境湿度低于50%的条件下,通过手工采样称重法测得粉尘浓度为11.3 mg/m³。在保持发尘浓度恒定的前提下,采用相同的手工采样方法,在不同湿度环境下测量并记录粉尘浓度变化,得到不同环境湿度下的粉尘浓度变化曲线,如图4所示。可看出当环境湿度由50%逐步增加至90%时,煤矿粉尘浓度呈现指数型增长趋势。经拟合,得到煤矿粉尘浓度与环境湿度之间的关系:
$$ C_{\mathrm{m}}(h)=C_{\mathrm{m}}(0)(1+kf^b(h)^{ }) $$ (2) 式中:$ C_{\mathrm{m}}(h) $为不同湿度下的煤矿粉尘浓度;$ {C_{\mathrm{m}}}(0) $为干燥条件下的煤矿粉尘浓度;$ f(h) $为湿度增量函数,通常为非线性函数;b为指数参数。
3. 用于煤矿粉尘浓度监测的湿度补偿技术
为减少湿度变化引起的粉尘浓度监测误差,需在煤矿粉尘浓度监测中进行湿度在线补偿。当前煤矿粉尘浓度监测中常用光散射法,因此提出一种基于不同角度散射光特性的湿度在线补偿技术。
3.1 多角度光散射粉尘浓度监测单元
基于多角度光散射理论,当光散射角度为π/2和3π/2时,能够实现最理想的粉尘浓度监测效果[18-19]。故在光散射角度为π/2和3π/2处分别安置光散射接收器,并将激光光源设置在与接收角垂直的方向。粉尘在2个接收器及激光光源所构成的空间中通过。
多角度光散射粉尘浓度监测单元主要由激光发射、散射光接收及光陷阱3个部分构成,如图5 所示。激光发射部分包含激光光源和光学透镜组,散射光接收部分由光电传感器和检测电路组成,光陷阱的作用是吸收入射光及干扰反射光,以确保监测过程的准确性。
进行粉尘浓度监测时,开启激光光源,激光经过光学透镜组产生1组光强稳定的平行入射光。当被测粉尘颗粒在光敏感区通过时,依据Mie散射原理,光电传感器1和2会接收到散射光。通过特定的换算方法可得出被测粉尘的浓度值。
3.2 湿度补偿实验模型
为研究不同湿度、不同粉尘颗粒粒径与散射光通量之间存在的关系,构建用于粉尘浓度监测的湿度补偿实验模型。实验所使用的粉尘、仪器及系统均与1.1节中保持一致,仅在实验步骤的最后一个环节增加采集光通量值的操作:将多角度光散射粉尘浓度监测单元放置于环境实验舱内,进行发尘操作;待粉尘浓度稳定后,采集多角度光散射粉尘浓度监测单元在不同湿度、不同粒径粉尘情况下光散射角度为π/2和3π/2时的散射光通量值。发尘操作使粉尘浓度达到11.3 mg/m³,经过反复多次实验,采集同一种中位粒径粉尘在不同湿度条件下光散射角度为π/2和3π/2时的散射光通量并计算比值,绘制中位粒径为11.3 μm的粉尘在不同湿度下的散射光通量比值曲线,如图6所示。经回归分析[20-21],得到同种粒径粉尘的散射光通量比值与湿度的关系。
$$ {k_{\mathrm{h}}} = {m_{{\mathrm{d}}2}}{\exp(h)} $$ (3) 式中:$ {k_{\mathrm{h}}} $为同种粒径粉尘的散射光通量比值与湿度的关系因子;$ {m_{{\mathrm{d}}2}} $为修正系数。
采集不同中位粒径粉尘在相同湿度环境下光散射角度为π/2和3π/2时的散射光通量并计算比值,得到不同中位粒径粉尘在90%RH湿度下2个角度的散射光通量比值曲线,如图7所示。经回归分析,得到相同湿度情况下粉尘中位粒径与散射光通量比值的关系。
$$ k_{\mathrm{p}}=m_{\mathrm{d}1}\ln\frac{d}{\mathrm{mm}}+m_1 $$ (4) 式中:$ {k_{\mathrm{p}}} $为不同中位粒径粉尘在相同湿度下的散射光通量比值的补偿因子;$ {m_{{\mathrm{d}}1}} $为修正系数;d为被测粉尘颗粒粒径;$ {m_1} $为补偿量。
经过实验研究和数学分析,建立实时反馈粉尘颗粒吸湿生长引起粒径变化的湿度补偿实验模型:
$$ C_{\Delta\mathrm{m}}=k_{\mathrm{p}}k_{\mathrm{h}}(I_1+I_2) $$ (5) 式中:CΔm为粉尘浓度;I1,I2分别为散射角度为π/2和3π/2对应位置接收到的散射光强度。
4. 煤矿粉尘浓度监测实验
设置实验环境温度为(25±2)°C,相对湿度为(80±2)%,以滤膜采样法为标准方法,采用带湿度补偿与不带湿度补偿的粉尘浓度监测单元进行对比,得到不同浓度下的监测误差,如图8所示。可看出采用湿度补偿的多角度光散射粉尘浓度监测单元监测误差≤11.2%,相比未进行湿度补偿的监测单元,误差降低了2.9%。
5. 结论
1) 观察煤矿粉尘颗粒在吸湿生长过程中的形貌特征,通过实验得到不同湿度条件下煤矿粉尘颗粒粒径和粉尘浓度的变化规律。
2) 研究了环境湿度、粉尘颗粒粒径与散射光通量之间的关联性,建立了湿度补偿实验模型。
3) 开展了基于湿度补偿的粉尘浓度监测实验,结果表明,采用湿度补偿的多角度光散射粉尘浓度监测单元的粉尘浓度误差≤11.2%,较不带湿度补偿的粉尘浓度监测单元降低了2.9%,降低了湿度对粉尘浓度监测的影响。
【编者按】煤矿灾害一旦发生,其影响范围和严重程度非常大;不同灾害之间可能存在相互影响和关联,使得灾害预防和应对变得复杂;煤矿灾害影响一般不会随着灾害的结束而立即消除;预防和应对煤矿灾害需要专业知识和技能等。针对煤矿灾害的多数工作都是建立在有效感知灾害的前提之上。但通过灾害数据和现象来感知灾害十分困难,特别是在数据不全、及时性和实时性差等条件下更为困难。随着智能感知技术的成熟、应用和实践,为实现煤矿灾害感知提供了智能方法。为介绍和推动智能感知技术在煤矿灾害预测中的应用,交流相关理论方法和研究成果,《工矿自动化》编辑部特邀沈阳理工大学崔铁军教授担任客座主编,于2024年第6期组织出版“煤矿灾害智能感知新技术与实践”专题。在专题出刊之际,衷心感谢各位专家学者的大力支持! -
[1] 李红毅,李永华,高会有. 白云鄂博矿区凸形边坡多因素影响下滑坡破坏模式研究[J]. 中国安全生产科学技术,2023,19(增刊1):98-103. LI Hongyi,LI Yonghua,GAO Huiyou. Study on landslide failure mode under the influence of multiple factors on convex slopes in Baiyunebo mining area[J]. Journal of Safety Science and Technology,2023,19(S1):98-103.
[2] 李树建,张义平. 晋宁磷矿采场边坡灾害及其防治研究[J]. 化工矿物与加工,2014,43(8):39-42. LI Shujian,ZHANG Yiping. Hazards of pit slope in Jinning Phosphate Mine and its prevention[J]. Industrial Minerals & Processing,2014,43(8):39-42.
[3] 冯巩,夏元友,王智德,等. 基于位移信息融合的露天矿边坡动态预警方法[J]. 中国安全科学学报,2022,32(3):116-122. FENG Gong,XIA Yuanyou,WANG Zhide,et al. Dynamic early warning method of open-pit mine slopes based on integrated displacement information[J]. China Safety Science Journal,2022,32(3):116-122.
[4] 曹兰柱,孙成亮,王东,等. FLAC3D的露天矿边坡变形破坏数值模拟分析[J]. 辽宁工程技术大学学报(自然科学版),2016,35(7):679-682. CAO Lanzhu,SUN Chengliang,WANG Dong,et al. Simulation analysis of damaged degeneration of open-pit mine slope based on FLAC3D value[J]. Journal of Liaoning Technical University (Natural Science),2016,35(7):679-682.
[5] 宋卫东,杜建华,杨幸才,等. 深凹露天转地下开采高陡边坡变形与破坏规律[J]. 北京科技大学学报,2010,32(2):145-151. SONG Weidong,DU Jianhua,YANG Xingcai,et al. Deformation and failure of a high steep slope due to transformation from deep open-pit to underground mining[J]. Journal of University of Science and Technology Beijing,2010,32(2):145-151.
[6] 郭子钰,刘向峰,王来贵,等. 抚顺西露天矿开挖作用下边坡变形破坏滑动规律研究[J]. 金属矿山,2021(12):190-199. GUO Ziyu,LIU Xiangfeng,WANG Laigui,et al. Study on the slope deformation and failure sliding law under the excavation of Fushun west open-pit mine[J]. Metal Mine,2021(12):190-199.
[7] 邓李政,袁宏永,张鸣之,等. 滑坡变形监测预警技术研究进展[J]. 清华大学学报(自然科学版),2023,63(6):849-864. DENG Lizheng,YUAN Hongyong,ZHANG Mingzhi,et al. Research progress on landslide deformation monitoring and early warning technology[J]. Journal of Tsinghua University (Science and Technology),2023,63(6):849-864.
[8] 叶江,李才艺,高红旗,等. 基于多时相光学遥感影像亚像素相关的边坡监测——以溪洛渡电站为例[J]. 测绘通报,2024(1):38-43,108. YE Jiang,LI Caiyi,GAO Hongqi,et al. Sub-pixel correlation-based slope monitoring using multi-temporal optical remote sensing images:a case study of Xiluodu hydropower station[J]. Bulletin of Surveying and Mapping,2024(1):38-43,108.
[9] 李振洪,宋闯,余琛,等. 卫星雷达遥感在滑坡灾害探测和监测中的应用:挑战与对策[J]. 武汉大学学报(信息科学版),2019,44(7):967-979. LI Zhenhong,SONG Chuang,YU Chen,et al. Application of satellite radar remote sensing to landslide detection and monitoring:challenges and solutions[J]. Geomatics and Information Science of Wuhan University,2019,44(7):967-979.
[10] 李如仁,葛永权,李梦晨,等. 基于InSAR−COMSOL的露天矿边坡稳定性分析及形变预测[J]. 金属矿山,2024(3):172-182. LI Ruren,GE Yongquan,LI Mengchen,et al. Stability analysis and deformation prediction of open-pit mine slopes based on InSAR and COMSOL[J]. Metal Mine,2024(3):172-182.
[11] 万忠明,王亚文,范子义. 无人机倾斜摄影技术在边坡监测中的应用[J]. 测绘通报,2022(6):170-172. WAN Zhongming,WANG Yawen,FAN Ziyi. Application of UAV tilt photography technology in slope monitoring[J]. Bulletin of Surveying and Mapping,2022(6):170-172.
[12] 孙威,朱成峰,张玉婷. 基于GNSS的露天采场边坡监测系统构建[J]. 现代矿业,2022,38(6):213-215,219. SUN Wei,ZHU Chengfeng,ZHANG Yuting. Construction of open-pit stope slope monitoring system based on GNSS[J]. Modern Mining,2022,38(6):213-215,219.
[13] 钟小宇,衣瑛,亢建民,等. 北斗GNSS技术在露天采场边坡监测中的应用[J]. 中国矿山工程,2022,51(1):56-60. ZHONG Xiaoyu,YI Ying,KANG Jianmin,et al. Application of Beidou GNSS technology in open-pit mine slope monitoring[J]. China Mine Engineering,2022,51(1):56-60.
[14] 尹永明,邹江湖,李华汐,等. 南方雨季环境下地基合成孔径雷达在露天矿山边坡监测中的应用[J]. 中国安全生产科学技术,2023,19(增刊1):55-59. YIN Yongming,ZOU Jianghu,LI Huaxi,et al. Application of ground-based synthetic aperture radar for monitoring of open pit mine slopes in southern rainy season environment[J]. Journal of Safety Science and Technology,2023,19(S1):55-59.
[15] 秦宏楠,马海涛,于正兴,等. 地基雷达干涉测量动态高频次数据用于滑坡早期预警方法研究[J/OL]. 武汉大学学报(信息科学版):1-9[2024-04-19]. https://doi.org/10.13203/j.whugis20220152. QIN Hongnan,MA Haitao,YU Zhengxing,et al. Landslide early warning method based on dynamic high frequency data of ground-based radar interferometry[J/OL]. Geomatics and Information Science of Wuhan University:1-9[2024-04-19]. https://doi.org/10.13203/j.whugis20220152.
[16] 王德军,万田宝,孙晓东,等. 基于三维激光扫描的植被覆盖边坡监测[J]. 测绘通报,2023(12):112-115. WANG Dejun,WAN Tianbao,SUN Xiaodong,et al. Monitoring of vegetation covered slopes based on 3D laser[J]. Bulletin of Surveying and Mapping,2023(12):112-115.
[17] 张峰,裴华富. 一种用于滑坡位移监测的OFDR测斜仪研发[J]. 中国测试,2023,49(1):119-125. ZHANG Feng,PEI Huafu. Development of an OFDR inclinometer for landslide displacement monitoring[J]. China Measurement & Test,2023,49(1):119-125.
[18] 许强,董秀军,李为乐. 基于天−空−地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报(信息科学版),2019,44(7):957-966. XU Qiang,DONG Xiujun,LI Weile. Integrated space-air-ground early detection,monitoring and warning system for potential catastrophic geohazards[J]. Geomatics and Information Science of Wuhan University,2019,44(7):957-966.
[19] 许强,朱星,李为乐,等. “天−空−地” 协同滑坡监测技术进展[J]. 测绘学报,2022,51(7):1416-1436. XU Qiang,ZHU Xing,LI Weile,et al. Technical progress of space-air-ground collaborative monitoring of landslide[J]. Acta Geodaetica et Cartographica Sinica,2022,51(7):1416-1436.
[20] 许强,董秀军,朱星,等. 基于实景三维的天−空−地−内滑坡协同观测[J]. 工程地质学报,2023,31(3):706-717. XU Qiang,DONG Xiujun,ZHU Xing,et al. Landslide collaborative observation technology based on real scene 3D view from space-air-ground-interior perspective[J]. Journal of Engineering Geology,2023,31(3):706-717.
[21] 张凯,李全生,戴华阳,等. 矿区地表移动“空天地” 一体化监测技术研究[J]. 煤炭科学技术,2020,48(2):207-213. ZHANG Kai,LI Quansheng,DAI Huayang,et al. Research on integrated monitoring technology and practice of "space-sky-ground" on surface movement in mining area[J]. Coal Science and Technology,2020,48(2):207-213.
[22] 程刚,张昊宇,朱鸿鹄,等. 边坡全维度监测技术与模型试验研究[J]. 高校地质学报,2024,30(2):207-217. CHENG Gang,ZHANG Haoyu,ZHU Honghu,et al. Research of full dimension monitoring technology and model test of slopes[J]. Geological Journal of China Universities,2024,30(2):207-217.
[23] 罗勇,唐华伟,管贵平,等. 基于综合监测技术的大型岩堆边坡防治研究[J]. 中外公路,2016,36(6):9-13. LUO Yong,TANG Huawei,GUAN Guiping,et al. Study on slope prevention and control of large-scale rock piles based on comprehensive monitoring technology[J]. Journal of China & Foreign Highway,2016,36(6):9-13.
[24] 郭延辉,杨溢,高才坤,等. 云南鲁甸地震红石岩堰塞湖右岸特高边坡综合监测及变形特征分析[J]. 中国地质灾害与防治学报,2020,31(6):30-37. GUO Yanhui,YANG Yi,GAO Caikun,et al. Comprehensive monitoring and deformation analysis of extra high slope on the right bank of Hongshiyan Dammed Lake in Ludian Earthquake[J]. The Chinese Journal of Geological Hazard and Control,2020,31(6):30-37.
[25] 马旭峰,王家臣,杨占峰,等. 多源信息融合在露天矿滑体监测中的应用[J]. 有色金属(矿山部分),2008,60(3):32-35. MA Xufeng,WANG Jiachen,YANG Zhanfeng,et al. Application of multi-source information fusion in the landslide monitoring of open pit mine[J]. Nonferrous Metals (Mining Section),2008,60(3):32-35.
[26] PENG M,LI X Y,LI D Q,et al. Slope safety evaluation by integrating multi-source monitoring information[J]. Structural Safety,2014,49:65-74. DOI: 10.1016/j.strusafe.2013.08.007
[27] 刘阳,张建经,李孟芳,等. 基于模糊理论与SVM的边坡地震失稳规模贝叶斯网络评估方法[J]. 岩石力学与工程学报,2019,38(增刊1):2807-2815. LIU Yang,ZHANG Jianjing,LI Mengfang,et al. Fuzzy theory- and SVM-based Bayesian network assessment method for slope seismic instability scale[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(S1):2807-2815.
[28] 王智伟,王利,黄观文,等. 基于BP神经网络的滑坡监测多源异构数据融合算法研究[J]. 地质力学学报,2020,26(4):575-582. WANG Zhiwei,WANG Li,HUANG Guanwen,et al. Research on multi-source heterogeneous data fusion algorithm of landslide monitoring based on BP neural network[J]. Journal of Geomechanics,2020,26(4):575-582.
[29] 王利,许豪,舒宝,等. 利用互信息和IPSO−LSTM进行滑坡监测多源数据融合[J]. 武汉大学学报(信息科学版),2021,46(10):1478-1488. WANG Li,XU Hao,SHU Bao,et al. A multi-source heterogeneous data fusion method for landslide monitoring with mutual information and IPSO-LSTM neural network[J]. Geomatics and Information Science of Wuhan University,2021,46(10):1478-1488.
[30] 郑海青,赵越磊,宗广昌,等. 融合自注意力机制的Conv−LSTM边坡位移预测方法[J]. 金属矿山,2022(11):193-197. ZHENG Haiqing,ZHAO Yuelei,ZONG Guangchang,et al. Prediction of slope displacement based on conv-LSTM combined with self-attention mechanism[J]. Metal Mine,2022(11):193-197.
[31] LIU Yong,XU Chang,HUANG Biao,et al. Landslide displacement prediction based on multi-source data fusion and sensitivity states[J]. Engineering Geology,2020,271. DOI: 10.1016/j.enggeo.2020.105608.
[32] LIU Chun,SHAO Xiaohang,LI Weiyue. Multi-sensor observation fusion scheme based on 3D variational assimilation for landslide monitoring[J]. Geomatics,Natural Hazards and Risk,2019,10(1):151-167. DOI: 10.1080/19475705.2018.1513871
[33] 鄢好,陈骄锐,李绍红,等. 基于时间序列和GRU的滑坡位移预测[J]. 人民长江,2021,52(1):102-107,133. YAN Hao,CHEN Jiaorui,LI Shaohong,et al. Predicting of landslide displacement based on time series and Gated Recurrent Unit[J]. Yangtze River,2021,52(1):102-107,133.
[34] ZHANG Jie,WANG Zipeng,HU Jinzheng,et al. Bayesian machine learning-based method for prediction of slope failure time[J]. Journal of Rock Mechanics and Geotechnical Engineering,2022,14(4):1188-1199. DOI: 10.1016/j.jrmge.2021.09.010
[35] 刘冠洲,张达,张元生,等. 高陡边坡多源监测预警信息一体化平台研究[J]. 冶金自动化,2018,42(6):1-7. LIU Guanzhou,ZHANG Da,ZHANG Yuansheng,et al. Research on multi-source monitoring and early warning information integration platform for high and steep slopes[J]. Metallurgical Industry Automation,2018,42(6):1-7.
[36] 张凌凡,陈忠辉,周天白,等. 基于梯度提升决策树的露天矿边坡多源信息融合与稳定性预测[J]. 煤炭学报,2020,45(增刊1):173-180. ZHANG Lingfan,CHEN Zhonghui,ZHOU Tianbai,et al. Multi-source information fusion and stability prediction of slope based on gradient boosting decision tree[J]. Journal of China Coal Society,2020,45(S1):173-180.
[37] 刘超云,尹小波,张彬. 基于Kalman滤波数据融合技术的滑坡变形分析与预测[J]. 中国地质灾害与防治学报,2015,26(4):30-35,42. LIU Chaoyun,YIN Xiaobo,ZHANG Bin. Analysis and prediction of landslide deformations based on data fusion technology of Kalman-filter[J]. The Chinese Journal of Geological Hazard and Control,2015,26(4):30-35,42.
[38] 朱自强,吴顺川,刘洋,等. 基于自适应Kalman滤波融合技术的边坡变形分析[J]. 矿业研究与开发,2020,40(1):16-21. ZHU Ziqiang,WU Shunchuan,LIU Yang,et al. Slope deformation analysis based on adaptive Kalman filter fusion technology[J]. Mining Research and Development,2020,40(1):16-21.
[39] 吴泽鑫,张成良,张华超,等. 基于SSA−BP的露天矿山边坡位移变形预测[J]. 有色金属工程,2024,14(6):125-133. WU Zexin,ZHANG Chengliang,ZHANG Huachao,et al. Research on slope displacement prediction of open-pit mine based on SSA-BP[J]. Nonferrous Metals Engineering,2024,14(6):125-133.
[40] 宁永香,崔希民. 矿山边坡地表变形的PSO−ELM预测模型[J]. 煤田地质与勘探,2020,48(6):201-206,216. NING Yongxiang,CUI Ximin. PSO-ELM prediction model for surface deformation of mine slope[J]. Coal Geology & Exploration,2020,48(6):201-206,216.
[41] JIANG Song,LIU Hongsheng,LIAN Minjie,et al. Rock slope displacement prediction based on multi-source information fusion and SSA-DELM model[J]. Frontiers in Environmental Science,2022,10. DOI: 10.3389/fenvs.2022.982069.
[42] 李胜,韩永亮. 基于MFOA−SVR露天矿边坡变形量预测研究[J]. 中国安全生产科学技术,2015,11(1):11-16. LI Sheng,HAN Yongliang. Research on forecasting of slope deformation in open-pit mine based on MFOA-SVR[J]. Journal of Safety Science and Technology,2015,11(1):11-16.
[43] 张研,范聪,吴哲康,等. 基于PSO−RVM的矿山边坡变形量预测模型[J]. 金属矿山,2022(10):191-196. ZHANG Yan,FAN Cong,WU Zhekang,et al. Forecast model of mine slope deformation based on PSO-RVM[J]. Metal Mine,2022(10):191-196.
[44] 金爱兵,张静辉,孙浩,等. 基于SSA−SVM的边坡失稳智能预测及预警模型[J]. 华中科技大学学报(自然科学版),2022,50(11):142-148. JIN Aibing,ZHANG Jinghui,SUN Hao,et al. Intelligent prediction and alert model of slope instability based on SSA-SVM[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition),2022,50(11):142-148.
[45] 罗亦泳,张立亭,鲁铁定,等. 露天矿边坡变形预测的协同进化多核相关向量机模型[J]. 中国安全科学学报,2016,26(11):110-114. LUO Yiyong,ZHANG Liting,LU Tieding,et al. Forecasting of slope deformation in open-pit mine based on CEPSO-MK-RVM[J]. China Safety Science Journal,2016,26(11):110-114.
[46] CHEN Bingqian,YU Hao,ZHANG Xiang,et al. Time-varying surface deformation retrieval and prediction in closed mines through integration of SBAS InSAR measurements and LSTM algorithm[J]. Remote Sensing,2022,14(3). DOI: 10.3390/rs14030788.
[47] HE Yi,YAN Haowen,YANG Wang,et al. Time-series analysis and prediction of surface deformation in the Jinchuan mining area,Gansu Province,by using InSAR and CNN-PhLSTM network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2022,15:6732-6751. DOI: 10.1109/JSTARS.2022.3198728
[48] 姜长三,曾桢,万静. 多源信息融合研究进展综述[J]. 现代计算机,2023,29(18):1-9,29. JIANG Changsan,ZENG Zhen,WAN Jing. A review of research advances in multi-source information fusion[J]. Modern Computer,2023,29(18):1-9,29.
[49] 钟国强,徐润,宋杰,等. 基于多态模糊贝叶斯网络的桩锚支护边坡失稳可能性评价[J]. 公路,2020,65(2):50-55. ZHONG Guoqiang,XU Run,SONG Jie,et al. Possibility evaluation of slope instability of pile-anchor support based on polymorphic fuzzy Bayesian network[J]. Highway,2020,65(2):50-55.
[50] AHMAD F,TANG Xiaowei,QIU Jiangnan,et al. Prediction of slope stability using Tree Augmented Naive-Bayes classifier:modeling and performance evaluation[J]. Mathematical Biosciences and Engineering,2022,19(5):4526-4546. DOI: 10.3934/mbe.2022209
[51] 徐卫亚,胡业凡,吴伟伟,等. 基于云模型和D−S证据理论的多源信息融合滑坡安全性评价[J]. 河海大学学报(自然科学版),2022,50(1):59-66. DOI: 10.3876/j.issn.1000-1980.2022.01.009 XU Weiya,HU Yefan,WU Weiwei,et al. Landslide safety evaluation by multi-source information fusion based on cloud model and D-S evidence theory[J]. Journal of Hohai University (Natural Sciences),2022,50(1):59-66. DOI: 10.3876/j.issn.1000-1980.2022.01.009
[52] 张化进,吴顺川,李兵磊. 基于改进D-S证据理论选择性集成的边坡稳定性评价[J/OL]. 金属矿山:1-12[2024-04-19]. http://kns.cnki.net/kcms/detail/34.1055.TD.20230818.1631.002.html. ZHANG Huajin,WU Shunchuan,LI Binglei. Slope stability evaluation based on selective ensemble of improved D-S evidence theory[J/OL]. Metal Mine:1-12[2024-04-19]. http://kns.cnki.net/kcms/detail/34.1055.TD.20230818.1631.002.html.
[53] 李哲,刘彤,刘路路,等. 基于证据理论的支挡型黄土高陡边坡稳定性评价[J]. 东南大学学报(自然科学版),2023,53(3):436-444. LI Zhe,LIU Tong,LIU Lulu,et al. Stability evaluation of supported high and steep loess slope based on D-S evidential reasoning[J]. Journal of Southeast University (Natural Science Edition),2023,53(3):436-444.
[54] 李国辉,刘永,招国栋,等. 基于RS-BPNN理论的边坡稳定性预测及应用[J]. 南华大学学报(自然科学版),2015,29(3):122-128. LI Guohui,LIU Yong,ZHAO Guodong,et al. The prediction and application of slope stability based on RS-BPNN[J]. Journal of University of South China (Science and Technology),2015,29(3):122-128.
[55] ZHANG Duo,FENG Dongmei. Mine geological disaster risk assessment and management based on multisensor information fusion[J]. Mobile Information Systems,2022,2022(1). DOI: 10.1155/2022/1757026.
[56] LIU Zaobao,SHAO Jianfu,XU Weiya,et al. An extreme learning machine approach for slope stability evaluation and prediction[J]. Natural Hazards,2014,73(2):787-804. DOI: 10.1007/s11069-014-1106-7
[57] 杨勇,张忠政,胡军,等. 基于随机权重法改进PSO−ELM的露天矿边坡稳定性分析[J]. 有色金属工程,2022,12(5):128-134. DOI: 10.3969/j.issn.2095-1744.2022.05.016 YANG Yong,ZHANG Zhongzheng,HU Jun,et al. Slope stability analysis of open-pit mine based on improved PSO-ELM with random weight method[J]. Nonferrous Metals Engineering,2022,12(5):128-134. DOI: 10.3969/j.issn.2095-1744.2022.05.016
[58] KANG Fei,XU Qing,LI Junjie. Slope reliability analysis using surrogate models via new support vector machines with swarm intelligence[J]. Applied Mathematical Modelling,2016,40(11/12):6105-6120.
[59] KANG Fei,LI Jingshuang,LI Junjie. System reliability analysis of slopes using least squares support vector machines with particle swarm optimization[J]. Neurocomputing,2016,209:46-56. DOI: 10.1016/j.neucom.2015.11.122
[60] TIEN BUI D,MOAYEDI H,GÖR M,et al. Predicting slope stability failure through machine learning paradigms[J]. ISPRS International Journal of Geo-Information,2019,8(9). DOI: 10.3390/ijgi8090395.
[61] 王健伟,徐玉胜,李俊鑫. 基于网格搜索支持向量机的边坡稳定性系数预测[J]. 铁道建筑,2019,59(5):94-97. DOI: 10.3969/j.issn.1003-1995.2019.05.22 WANG Jianwei,XU Yusheng,LI Junxin. Prediction of slope stability coefficient based on grid search support vector machine[J]. Railway Engineering,2019,59(5):94-97. DOI: 10.3969/j.issn.1003-1995.2019.05.22
[62] ZHANG Wengang,LI Hongrui,HAN Liang,et al. Slope stability prediction using ensemble learning techniques:a case study in Yunyang County,Chongqing,China[J]. Journal of Rock Mechanics and Geotechnical Engineering,2022,14(4):1089-1099. DOI: 10.1016/j.jrmge.2021.12.011
[63] QI Chongchong,TANG Xiaolin. Slope stability prediction using integrated metaheuristic and machine learning approaches:a comparative study[J]. Computers & Industrial Engineering,2018,118:112-122.